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Abstract

This paper examines the impacts of health care provider exits on patient outcomes and

subsequent reallocation. Using administrative data on the universe of nursing home patients,

I estimate the mortality effects of 1,109 nursing home closures on incumbent residents with

a matched difference-in-differences approach. I find that displaced residents face a short-run

15.7% relative increase in their mortality risk. Yet this increase is offset by long-run survival

improvements, so the cumulative effect inclusive of the initial spike is a net decline in mortality

risk. These gains are driven by patients reallocating to higher quality providers. I also find

significant heterogeneity by local market conditions: the survival gains accrue only to patients

in competitive nursing home markets, whereas residents in concentrated markets experience

no survival improvements. I then develop and estimate a dynamic model of the nursing home

industry with endogenous exit. Combining the model estimates with the mortality results, I

examine the effects of counterfactual reimbursement policy experiments on nursing home closures

and resident life expectancy. A universal 10% increase in the Medicaid rate decreases the

frequency of closures, but causes some low-quality providers to remain open in competitive

areas. In contrast, targeted subsidies for facilities in areas with limited alternatives improves

overall life expectancy by averting the costliest nursing home closures.
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1 Introduction

The U.S. nursing home industry has been in a state of decline for decades, as public reimbursement

rates have stagnated and alternative forms of long-term care have proliferated. Nearly 15% of

facilities have exited since 2000, representing a 10% reduction in aggregate capacity and raising

concerns over access to care, particularly in rural markets. Despite these trends, little is known

about the implications of these closures for incumbent residents who are displaced, nor about the

efficacy of alternative payment reforms to avert further closures.

Nursing home closures may entail countervailing forces for incumbent residents. On one hand,

patients who are displaced may fare worse due to potential disruptions in care continuity, declines

in quality in the final weeks of a facility’s life, and forced changes in environment for an already

vulnerable population. On the other hand, facilities that exit due to financial fragility may be

lower quality than replacement-level alternatives, and so displaced residents may find themselves

reallocated to higher quality facilities, thereby improving health outcomes and extending their

longevity. Understanding these effects is therefore crucial to assessing the desirability of alternative

policies aimed at sustaining financially vulnerable nursing homes.

In this paper, I study the mortality effects of 1,109 nursing home closures for incumbent resi-

dents. To explore the trade-offs between the immediate disruptive costs and the long-term benefits

of reallocation, I estimate both short-run and long-run mortality effects using a matched difference-

in-differences design applied to administrative data on the universe of nursing home residents. To

evaluate the effects of alternative reimbursement policies on firm closures, I then estimate a dynamic

model of the nursing home’s exit decision, and combine these model estimates with the mortality

results to evaluate the effects of such policies on resident life expectancy.

I find that nursing home residents experience a 1.14 percentage point increase in their short-

run risk of mortality after the facility closes, representing a 15.7% increase over the baseline rate.

Following this initial spike, however, mortality risk among surviving patients falls significantly, such

that cumulative long-term mortality is 1.23 percentage points lower than if the facility had not

exited, even inclusive of the initial increase. These gains primarily accrue to younger patients and

those without Alzheimer’s disease or a related dementia. Older and sicker residents experience only

the sharp short-run increases in mortality, with no survival gains. These results are not driven by

short-term mortality displacement, also known as ‘harvesting.’ Rather, I explain these effects by

using state-issued deficiency citations to show that exiting facilities are of particularly low quality,

and that surviving patients reallocate to higher-quality firms.

Yet this reallocative force does not operate everywhere. I find considerable treatment effect

heterogeneity by local facility capacity, consistent with widespread media concerns over diminishing

rural nursing home access (Healy 2019; Saslow 2019). The survival gains from patient reallocation

accrue only to residents in competitive nursing home markets. In contrast, patients in areas with

few remaining facilities experience the sharpest increases in mortality risk but none of the long-

term survival gains. Moreover, I find that for-profit firm exits generate the largest survival gains,
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whereas non-profit exits generate no survival improvements.1

The disparity in outcomes between areas with robust nursing home markets and areas with

declining access to care raises the question of how to balance the implied access-quality tradeoff. To

this end, I develop and estimate a dynamic model of nursing home exits, with the goal of evaluating

alternative reimbursement policies. The demand side of the model resembles Hackmann (2019), who

develops a rich, static industry model of nursing home supply and demand with the aim of examining

how changes to reimbursement rates impact the equilibrium levels of nurse staffing. I extend this

model to incorporate a dynamic exit decision estimated in the style of Pakes, Ostrovsky, and Berry

(2007). Using the model estimates, I then examine how changes in the Medicaid reimbursement

rate affect the number and distribution of nursing home closures. Combining these results with

the mortality estimates, I can then evaluate the effects of alternative reimbursement policies on

resident mortality.

I find that a universal 10% increase in the Medicaid reimbursement rate reduces the observed

number of closures in both markets that are competitive, where I find reallocative benefits, and

in markets that are concentrated, where I find no evidence of survival gains. As a consequence,

the overall effect of the policy on resident mortality is slightly negative, as it continues to sustain

low-quality facilities in areas with other options available. Because patients value access to care,

and in particular the proximity to nearby facilities, this universal increase does raise consumer

surplus relative to baseline, by avoiding restrictions in patients’ choice sets.

These results motivate a more flexible counterfactual policy experiment, which narrowly targets

subsidies to different firms according to their observable characteristics. Such a program is similar

in spirit to the existing federal Rural Hospital Flexibility program, which boosts reimbursement

rates for financially vulnerable hospitals that provide critical access care in rural areas. Targeting

higher rates only to firms in areas with few other providers, while avoiding the rate increases for

firms in competitive areas, generates a more favorable distribution of firm exits, by continuing to

permit the beneficial exits in competitive areas. However, because patients value the access to care

provided even by firms in competitive areas, there is still a quality-access trade-off present even

with the more targeted subsidy.

Even the most narrowly targeted subsidies fail to pass a cost-benefit analysis using conventional

values of statistical life. This reflects the sheer magnitude of current public spending levels in

long-term care, and even a narrowly targeted 10% rate increase would constitute a considerable

increase in public investment in the industry. That said, the aim of the counterfactual policies is

to explore whether alternative reimbursement schemes would impact the distribution of nursing

home exits, and how these would impact resident mortality in light of the reduced form results.

Modeling limitations, such as holding quality fixed as reimbursement rates change, may influence

the conclusions of the counterfactual policy experiments, by understating their mortality benefits

for infra-marginal firms.

1. This result is consistent with the robust finding that non-profit nursing homes tend to provider higher quality
care (e.g., Grabowski and Stevenson 2008).
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This paper contributes to several distinct literatures. Primarily, I contribute to a growing

literature on the implications of health care provider exits for patients. This work has largely

focused on exits of hospitals (Carroll 2019; Battaglia 2022; Joynt et al. 2015) and primary care

physicians (Sabety 2023; Kwok 2019; Schwab 2021), and has generally found adverse consequences

for health outcomes, though several studies report some efficiency gains. My findings extend this

literature to nursing home exits. There are several reasons to believe that nursing home closures

may have more accentuated effects on patients than other provider exits. Long-term care patients

are by definition in poor health, even preceding a closure. Closures necessitate particularly costly

moves for residents, as long-term care facilities are communities themselves, and residents develop

personal connections with the staff and their fellow patients which may otherwise persist for years.

I also contribute to the small but growing body of research on the economics of the nursing home

industry (Gandhi 2020; Lin 2015; Ching, Hayashi, and Wang 2015; Hackmann, Pohl, and Ziebarth

2021; Grabowski, Gruber, and Angelelli 2008; Gupta et al. 2021; Gandhi, Song, and Upadrashta

2020). In addition to modeling the mortality consequences of firm exits, I also examine how changes

in reimbursement rates would affect the distribution of firm exits. The implications of my results

for nursing home quality, pertaining to long-stay residents, also complement two recent working

papers by Olenski and Sacher (2022) and Einav, Finkelstein, and Mahoney (2022) which estimate

facility-level quality for short-stay nursing home patients. My counterfactual analyses are closely

related to Hackmann (2019), who develops a rich model of the nursing home industry and examines

the role of the Medicaid reimbursement rate in determining staffing levels, a common measure of

quality. I adapt Hackmann’s demand model and estimation procedure to my setting, and extend

his supply side to incorporate the firm’s dynamic exit decision.

A final contribution is to the well-developed literature in industrial organization on consumer

reallocation and firm productivity (Olley and Pakes 1996; Foster, Haltiwanger, and Krizan 2006;

Foster, Haltiwanger, and Syverson 2008). Syverson (2011) and De Loecker and Syverson (2021)

provide overviews of this literature spanning multiple sectors. A robust empirical finding of this

literature is that lower productivity firms are more likely to exit. Chandra et al. (2016) note that

in health care markets, because consumers bear a low share of the costs of production, it is more

sensible to view competition over quality rather than conventional productivity measures. Adopting

this framework, my reallocation results support extending this result to the health care sector.

The remainder of the paper proceeds as follows. Section 2 provides a brief industry background,

highlights critical institutional details, and reviews the data used in each step of the analysis. Sec-

tions 3 and 4 present the research design and mortality results, respectively. Section 5 describes the

structural model of the nursing home exit decision, and Section 6 details the estimation procedure

and presents results. In Section 7, I use the model estimates combined with the mortality effects

to analyze the effects of several reimbursement policies designed to avert nursing home closures on

resident life expectancy. Section 8 concludes.
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2 Setting and Data

Skilled nursing facilities, commonly referred to as nursing homes, are certified to provide care and

receive public reimbursement by the Centers for Medicare & Medicaid Services (CMS). Nursing

homes provide a broad array of services, including both short-term post-acute rehabilitative therapy

as well as routing nursing services for long-stay residents who are incapable of living independently.

Long-term care patients suffering from chronic conditions, such as Alzheimer’s disease or a related

dementia, have stays that may last years according to their longevity. As a consequence, nursing

homes themselves constitute communities, and residents may form close bonds with staff and other

patients. The closure of a nursing home – resulting in a scattering of residents and staff – is a

displacement of individuals from their community and may therefore have deleterious impacts on

resident health and well-being.

2.1 Recent Trends in U.S. Nursing Home Entry and Exit

The nursing home industry is a substantial component of the economy. Comprising approximately

1% of U.S. gross domestic product and housing 2.4% of the senior population, nursing homes lag

behind only hospitals, physicians, and pharmaceuticals in national personal care expenditures. This

scale points to a substantial public interest in the industry, as the majority of nursing home care

is publicly financed, representing about 7% of all government health care spending.

Despite the market’s size and aging demographics, the nursing home industry has been marked

by an aggregate decline over the past few decades. The top panel of Figure 1 documents that

from 2000 to 2019, the total number of facilities shrank 13.6% from 16,964 to 14,650 (data from

LTCFocus.org), even as the senior population grew by more than 50%. This contraction is marked

by considerable geographic heterogeneity. As is true for many basic medical services, rural areas

have been particularly hard hit by diminishing access to nursing home care. The bottom panel of

Figure 1 documents that rural counties have experienced the steepest declines in capacity over this

period. Nationally, the median number of beds per 100 seniors in a county fell from 5.7 to 3.5,

with the largest declines occurring in Midwestern states. This wave of rural nursing home exits has

generated considerable media attention, documenting stories of residents who are displaced by 50+

miles and emphasizing the burden such closures place on their families (Healy 2019; Saslow 2019).

Both firms and industry analysts widely believe that the primary culprit behind the wave of

nursing home closures is insufficient public (Medicaid) reimbursement rates. Annual trade associa-

tion reports find that rates routinely fall below the cost of providing care, such that each additional

Medicaid patient results in average losses for facilities ranging from $5 to $70 per day (AHCA 2018),

with several ongoing lawsuits brought by providers against states alleging that rates have failed

to keep up with costs over time. Although research on the topic is more scant, the finding have

consistently corroborated industry claims. Nursing homes with lower Medicaid rates and higher

shares of Medicaid residents report lower profits and are routinely found to be more likely to exit

(Castle et al. 2009; Zinn et al. 2009). I replicate these results using an annual panel of nursing
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Figure 1: Contraction in the Nursing Home Industry
Notes: Top panel documents the decline in the total number of skilled nursing facilities over the
period 2000-2020. Bottom panel documents the (county-level) geographic variation in the decline
of nursing home capacity over the sample period, with the sharpest reductions occurred through
rural areas in the South and Midwest. Data from the LTCFocus.org database and the U.S. Census
Bureau annual population estimates.
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Figure 2: Determinants of Nursing Facility Exits
Notes: Figures present binned scatterplots of facility-year variable profits, exit probabilities, oc-
cupancy rates, and shares of patients whose stays are funded by Medicaid. Data on occupancy
and Medicaid shares come from the LTCFocus.org database, while data on profits come from the
Medicare Cost Reports, and span the period 2011-2019. Exits are defined in Section 2.3.2.

homes from 2011 to 2019, and present the results in Figure 2. As expected, I find that firms with

higher occupancy rates and lower shares of Medicaid patients report higher profits, and that the

exit probability is a decreasing function of profits. To ease comparison, I scale variable profits by

facility size (number of beds).

The dependence of private facilities on the Medicaid rate underscores that the majority of

nursing home care is publicly financed. In this respect, the nursing home market is exceptional

even relative to the rest of the U.S. health care sector. Medicare (the near-universal health insurer

for the elderly and disabled) and Medicaid (the means-tested ‘safety net’ insurer) together account

for approximately 85% of annual revenues for nursing home care (Gandhi 2020). In contrast, public

payers comprise just under half of patient revenues in the hospital industry. The outsized role of

7



Medicaid is owed to the fact that Medicare reimbursement for nursing home stays is capped to only

the first 100 days of a stay, meaning that most long-term patients end their stays on Medicaid,

after their assets have been depleted.

The declining profitability of the industry likely also explains the lack of offsetting entry over

this period. As the nursing home industry has contracted, there has been a corresponding boom in

alternative forms of senior living arrangements, such as assisted living, which are not certified by

CMS to provide the same level of care. These facilities are much less heavily regulated than nursing

homes, and accept only private-pay residents, with few exceptions. Although these facilities may

be alternatives for patients with lighter care needs, those patients who do require routine nursing

services are left with fewer options.

2.2 Quality of Care: Public Concerns and Measurement Issues

The low quality of nursing home care has been a source of tremendous concern for both researchers

and policymakers for decades (Institute of Medicine 1986). Residents routinely suffer harm directly

due to their care. A recent New York Times exposé details the horrific conditions that many nursing

home residents face, including neglect, abuse, and even death (Silver-Greenberg and Gebeloff 2021).

Such instances – including the assault of patients, presence of maggots in prepared foods, and bed

sores deep enough to reveal bone – are not cherry-picked examples. One in three Medicare nursing

home patients experienced an adverse event leading to harm or death as a result of their care (Office

of Inspector General 2014).

These violations are documented by state health inspectors. To be eligible for public reimburse-

ment, facilities must undergo annual inspection surveys as part of a broader re-certification process,

as well as in response to complaints. State inspectors follow staff as they work, interview residents,

and comb through medical records to identify problems and issue deficiency citations when they

encounter problems. In this paper, I focus on “quality of care” violations (such as nursing or phar-

macy infractions), as these most plausibly contribute to resident mortality. Such deficiencies are

quite common. In 2013, approximately 93% of firms received at least one deficiency, and one in five

facilities received severe deficiencies for causing (at least the potential for) actual harm or jeopardy

to residents (Harrington et al. 2016; Harrington et al. 2018).

Of course, nursing home quality of care is an inherently difficult object to measure, and the

deficiency citations studied here are only one possible metric. Approaches common to industrial

organization, such as the use of revealed preferences in consumer demand to infer quality, are

broadly ill-suited to health care markets due to the presence of asymmetric information (Arrow

1963). In nursing home markets, patient preferences are particularly difficult to interpret due to

the number of agents involved in the nursing home decision (family members, hospital discharge

planners, etc.) as well as selective admissions policies unobservably restricting choice sets (Gandhi

2020).

For these reasons, measuring quality is an on-going area of research: two recent papers by Einav,

Finkelstein, and Mahoney (2022) and Olenski and Sacher (2022) estimate nursing home quality for
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short-stay patients using instrumental variable approaches. Einav, Finkelstein, and Mahoney (2022)

construct a ‘value-added’ measure as the facility-specific component of the change in the probability

of discharge back to the community, whereas Olenski and Sacher (2022) estimate a Bayesian model

of quality using 90-day mortality. Both papers report considerable heterogeneity in quality across

facilities. Yet, both quality measures are ill-suited for the long-stay patient population studied in

this paper. By definition, long-stay patients are those who were not quickly discharged back to the

community and who survived beyond the 90-day threshold. As a consequence, I rely on the more

widely used quality of care violations, which are relevant to all patient populations.

2.3 Data

2.3.1 Sources

I combine several sources of administrative data from CMS along with publicly available data on

nursing home characteristics. The core of my analysis comes from resident-level assessment data

from the Minimum Data Set (MDS), which covers the universe of nursing home patients spanning

2000-2017. All CMS-certified nursing homes are required to complete (at least) quarterly assess-

ments of each resident, beginning at admission and ending at discharge. The MDS, increasingly

popular among researchers, collects a wide range of clinical information used by staff to guide care

plans, and by payers to determine reimbursement rates. I use these data to construct a quarterly

panel of nursing home residents.

The MDS panel is supplemented with the universe of Medicare enrollment and fee-for-service

claims data. By linking the MDS to Medicare data, I am able to track patients after nursing home

discharge, allowing me to observe mortality, home zip codes prior to admission, movement across

facilities, and health care utilization over time. I measure short-stay acute care hospitalizations

for the 88.3% of my sample who are enrolled in Fee-for-Service (Traditional) Medicare using the

Medicare Provider and Analysis Review (MedPAR) files.

In addition to these administrative data, I also combine a variety of publicly available datasets

on nursing home characteristics. I measure quality using the annual number of deficiency citations,

collected from Nursing Home Compare. I identify dates of termination from Medicare and Medicaid

billing using the CMS Provider of Service files. To collect facility variables, such as addresses, bed

counts, and annual snapshots of occupancy and payer composition, I use the OSCAR/CASPER

data, accessed through LTCFocus.org.2 In estimating the supply-side of the structural model

detailed in Section 5, I collect national accounting data on revenues and variable costs from the

Healthcare Provider Cost Reporting Information System (HCRIS), commonly referred to as the

Medicare cost reports. I estimate the demand side of the model using MDS admission assessments

in Illinois. I augment these micro-data with state Medicaid cost reports, from which I infer daily

Medicaid and private rates using data on revenues and quantities (Huang and Hirth 2016). All

2. LTCFocus is sponsored by the National Institute on Aging (1P01AG027296) through a cooperative agreement
with the Brown University School of Public Health.
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data sources used, their years spanned, and their application in this project are summarized in

Appendix Table C.1.

2.3.2 Identifying Exits

A common issue in the literature on provider exits is identifying whether a specific facility that

exits the data actually shut down, or merely changed the provider identifier due to a merger, acqui-

sition, or new certification (Carroll 2019; Joynt et al. 2015). Previous approaches in the literature

on hospital closures have conducted manual searches to identify ‘true’ exits. Unfortunately, this

approach is less feasible in the nursing home setting, as (1) there are about three times as many

nursing homes as hospitals, (2) changes in nursing home ownership/name are much more frequent

making manual searches more challenging, and (3) exits occur at an order of magnitude greater

rate.

To identify nursing home exits, I construct a candidate list of exits by linking the termination

dates in the Provider of Service files with the last year a facility is observed in the LTCFocus panel,

and by restricting to facilities whose final observed year is within one year of its termination date.

For these candidate closures, I then apply the Uber H3 hexagonal spatial index to assign each

facility to a narrow tile of approximately 0.1 square kilometers.3 A closure is ‘confirmed’ if there is

no new facility operating in the tile in the subsequent year. This procedure leaves me with a final

sample of 1,109 nursing home exits occurring over the period 2001-2014.

Of course, this procedure may be imperfect. For instance, any transcription errors in the address

will result in inaccurate geocoding, which may erroneously lead to a facility being labeled an exit

when it did not, though spot-checks and congruence with state-level reports suggests that this

concern is minimal. Nonetheless, to the extent that my procedure identifies false closures, the

estimated mortality effects will be attenuated towards zero.

2.4 Exit and Mortality

Figure 3 presents preliminary empirical evidence on the relationship between nursing home exit

and initial resident mortality, as well as subsequent long-term survival. Panel (a) demonstrates

the first empirical finding of this paper. Using the MDS assessments and the dates of death from

the Medicare enrollment records, I plot the facility-level raw quarterly mortality rate of all long-

stay residents present in an exiting firm. The quarterly mortality rate remains flat in the period

preceding the shutdown date, and then spikes in the quarter of exit. This sharp increase suggests

a substantial sudden mortality cost associated with nursing home exits. Yet identifying the effect

of an nursing home exit – rather than changes in the sample composition – will require fixing a

baseline sample, as well as constructing a control group, which I detail in Section 3.

To explore the long-run effects of exit on resident survival, I plot the unadjusted cumulative

survival (Kaplan-Meier curves) of all displaced residents who were present in a closing facility two

3. I find very similar results when I expand the tile size to 1 square kilometer. Further details available at
https://eng.uber.com/h3/.
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Figure 3: Preliminary Evidence on Mortality Effects of Nursing Home Exits
Notes: Figures present preliminary empirical patterns on the relationship between nursing facility
shutdown and resident mortality. Panel (a) documents the mean facility-level quarterly mortality
rate in the four years preceding the exit, including the spike at the time of closure. Panel (b)
tracks the survival rates of residents displaced by the exits, relative to a matched control sample of
residents in facilities that did not exit. The matching is described in Section 3.

quarters prior to exit in Figure 3 panel (b). I also plot the corresponding survival curves for a

matched control sample, consisting of residents in observably similar facilities that did not exit,

explained in more depth in Section 3. These curves illustrate the second empirical finding: the

long-run survival rate for the displaced residents lies above the survival rate for residents who were

not affected by a closure, suggesting that the closures may induce survival-improving reallocation.

Taken together, these figures highlight the two major empirical findings of this paper. First,

nursing home closures are associated with a substantial increase in quarterly resident mortality.

Second, long-run survival for displaced patients trends above the corresponding survival for residents

unaffected by a closure. Estimating the relative magnitudes of these two effects, and exploring

the mechanisms behind any quality-improving reallocation, require a formal empirical strategy to

identify the causal effect of nursing home exit.

3 Estimating the Mortality Effects of Exit

3.1 Research Design and Estimation Sample

Estimating the causal effect of nursing home exits on mortality requires constructing counterfactual

resident survival rates in the absence of a closure. I do so by examining how mortality evolves among

nursing home patients residing in comparable facilities that did not close. Because closures do not

occur at random, the universe of non-exiting firms may offer an inadequate control group if the

residents of exiting firms systematically differ in their mortality trends.

To address this concern, I construct a matched sample of non-exiting nursing homes which
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are observably similar to the set of closing facilities in the year prior to exit.4 I match each

exiting facility with up to four control facilities on the similarity of their characteristics (measured

with Mahalanobis distance): occupancy, the shares of private-pay and Medicaid patients, for-profit

status, bed counts, chain ownership, market concentration, levels of staffing, and county population.

Appendix Table C.2 provides summary statistics on both the exiting facilities and the matched

sample from the year prior to exit, in addition to the universe of non-exiting firms. Exiting firms

are smaller, less likely to have a specialty care unit, and have significantly more Medicaid patients

than the universe of non-exiting firms. Matched firms are much closer in size (84.8 beds compared

to 91.9), have comparable shares of private-pay patients (approximately 18%), and are similarly

distributed across rural and urban areas.

This matching approach to estimating the causal effect of a nursing home closure hinges on the

identification assumption that resident mortality risk in the treatment group would have evolved in

parallel with the control group absent the closure. Specifically, I assume that the firms’ shutdown

decisions – which may be endogenous to demand (Figure 2 indicates that the number and type of

patients are key determinants of profits, which predict exit) – are orthogonal to any idiosyncratic

health shocks to incumbent residents in the period around the closure. Mortality rates between res-

idents of the treatment and control facilities trend in parallel in the year prior to closure, supporting

this assumption.

Identifying the mortality effects of a nursing home closure also requires defining the set of

patients who are impacted by the exit. The residents who remain in a facility until the shutdown

date may be a selected sample, as they may be the least attentive to the firm’s financial fragility.

Moreover, families may hesitate to transfer a patient who is too frail to travel. This sample may

further be polluted by the early effects of a closure: as the staff depart for new employment,

facility quality may deteriorate just prior to the shutdown date, and so restricting to only the last

remaining patients may ignore the initial impacts of an exit. Conversely, choosing a sample of

baseline residents who were present long before the closure date may generate attrition bias, as

residents may die or transfer out of the facility prior to treatment, for reasons unrelated to the

closure. The right threshold for choosing the sample of affected residents is one that balances these

tradeoffs.

Examining the daily counts of assessments in the year prior to exit, I find that facilities begin

to discharge patients approximately 90 days before their termination date from the Medicare and

Medicaid programs, at which point new admissions also begin to taper (Appendix Figure C.1).

These patterns motivate a baseline cohort of treated residents as those who are in the facility two

quarters prior to the exit date.5 This window is near enough to the termination date to allow

for the possibility that some patients will be discharged prior to exit, but not so far that the

treatment effect of exiting will be attenuated. To assess the parallel trends assumption implicit

in the difference-in-differences approach, I follow Deryugina and Molitor (2020) and construct a

4. This approach mirrors recent studies of the effects of provider exits on patient outcomes (e.g. Sabety 2023).
5. I rely on quarterly and annual assessments, rather than new admission assessments, to identify long-stay patients

rather than the post-acute short-stay patients likely to be discharged prior to exit (Huang and Bowblis 2019).
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Closing Facility Matched Facility
(1) (2)

Resident Characteristics
White, % 78.5 80.6
Female % 65.8 69.8
Age 78.7 80.7
Medicare Advantage % 12.5 11.6

Prior Diagnoses
Diabetes, % 30.7 31.1
Peripheral Vascular Disease, % 13.6 14.3
Alzheimer’s/Dementia, % 55.7 56.8
Stroke, % 23.6 25.8
Depression, % 52.0 53.3
Hip Fracture, % 7.9 9.1

Requires Assistance
Toileting, % 70.1 72.5
Dressing, % 71.4 72.9
Eating, % 32.3 32.5
Hygiene, % 72.1 72.5
Transfers, % 61.3 64.8

Number of Residents 43,248 204,010

Table 1: Summary Statistics

Notes: Table presents summary statistics for the baseline analytic sample. Column (1) describes the
characteristcs (observed two quarters prior to closure) of the residents of closed facilities. Column
(2) characteristics of the residents of the matched control facilities.

second cohort of residents who were present four quarters prior to exit. While the treatment effect

of the exit will be attenuated for this cohort because they may be discharged or die prior to the

exit date, I will use this cohort to examine the extent to which the mortality rates of the treatment

and control groups move in parallel prior to closure.

This procedure results in 43,248 treated patients and 204,010 control patients during the window

2001-2014.6 Table 1 contains summary statistics on the resident samples. Patient characteristics

are similar between the exiting and matched facilities. There is slight remaining imbalance between

the two – residents of closing facilities are less likely to be white (78.5% vs 80.6%) or female (65.8%

vs 69.8%), and are slightly younger (78.7 vs 80.7 years at time of closure). Although difference-

in-differences does not require balance in levels, I nonetheless address this remaining imbalance by

including a rich set of demographic and chronic condition controls in the event study estimation. To

assess the sensitivity of the results to these controls, I also examine the stability of the coefficients

by iteratively adding different sets of controls, and find that the point estimates are quite stable

(Section 4).

6. I restrict the sample of exits to ensure one year of pre-treatment and three years of post-treatment observations.
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3.2 Quarterly and Cumulative Mortality

The baseline resident panel begins two quarters prior to the nursing home exit, τ = −2, and

runs through 2017 or the individual’s death. Crucially, because I measure mortality through the

Medicare enrollment records, rather than as recorded by the nursing home, I am able to track

patient mortality following discharge.

To establish the effect of a nursing home exit on quarterly mortality risk, I estimate the following

regression:

Yit =
12∑

τ=−1
βτdτit × Exitj(i) + µj(i) + λc(i)t + δXit + εit (1)

where Yit is an outcome for individual i in quarter t, such as mortality. Relative time indicators dτit
denote the quarters around the facility exit. I include two sets of fixed effects: µj(i) is a fixed effect

for the resident’s initial nursing home at baseline, τ = −2, and λc(i)t is a matched cohort-by-quarter

fixed effect, where cohorts are defined as the exiting facility and its matched controls. Xit is a vector

of patient-level covariates, including demographics and chronic conditions present at baseline. The

focal parameters are βτ , which capture how the change in the treated residents’ mortality between

the reference quarter and quarter τ diverges from the change in the control residents’ mortality

over the same period. Standard errors are clustered at the facility-level.

The quarterly mortality effects βτ estimate the change in the hazard rate induced by the exit,

but reveal nothing about the cumulative effect on survival. Changes in βτ may reflect compositional

changes, as relatively frailer residents may die from the shock, resulting in a healthier remaining

pool of patients in the treatment group. To accommodate this concern, I follow Deryugina and

Molitor (2020) and compute the cumulative mortality effect for each relative quarter t:7

∆Mt =

t∏
τ=−1

(1−mτ + βτ )−
t∏

τ=−1
(1−mτ ) (2)

where mτ is the empirical fraction of the treated residents who die in quarter τ . ∆Mt is the

(negative) difference between the treatment group’s observed survival rate to period t and the

counterfactual survival rate the group would have experienced had treatment not occurred.8 I

estimate ∆Mt and its analytic standard error using the βτ estimates from equation (1) and the

delta method.

7. Although the cumulative mortality effect is the primary object of interest, it is not feasible to estimate ∆Mt

directly. This is because survival rates converge to zero for all cohorts. Hence, any level differences in baseline
mortality risk between the treatment and control groups imply that their survival curves would not have moved in
parallel in the absence of treatment. However, there is no reason for the quarterly mortality hazards to converge over
time, and so I use βτ to calculate the implied changes in cumulative mortality.

8. For the derivation of equation (2), notice ∆Mt = (1−SOt )− (1−SCt ) = SCt −SOt , where SOt =
∏t
τ=−1(1−mτ )

and SCt =
∏t
τ=−1(1 − mτ + βτ ) are the observed and counterfactual survival rates, respectively (Deryugina and

Molitor 2020).
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3.3 Mechanisms

The flexibility of the difference-in-differences regression in equation (1) allows me to consider alter-

native dependent variables, which may provide evidence on the mechanisms behind any mortality

results.

Reallocation Across Providers – One advantage of the administrative data is the ability to

track the same resident across providers, allowing me to examine how displaced patients reallocate

following a facility exit. To examine changes in quality, I re-estimate equation (1), replacing the

dependent variable with various measures of the nursing home I observe resident i in at quarter

t. In particular, I study the change in the annual rate of quality-of-care deficiencies (scaled by

bed size), as well as the likelihood of any severe violations (causing patient harm or immediate

jeopardy). Leaning on the enrollment data, I compute the distance between the resident’s last

observed zip code prior to nursing home admission and their nursing home as of quarter t, allowing

me to examine how far residents are displaced.

Hospitalization – In addition to the nursing home assessment data, I also observe the universe

of short-stay acute care admissions for the 88.3% of my sample who are enrolled in fee-for-service

Traditional Medicare, rather than a Medicare Advantage plan. Restricting my analysis to this

subsample, I can examine how hospitalizations evolve following a nursing home exit, which is

informative of the drivers behind any mortality results. Because the MDS does not contain any

cause of death codes, I am restricted to approximating cause of death using the primary diagnosis

code of any inpatient hospitalizations ending with death. I classify the primary diagnoses into Major

Diagnostic Categories (MDC), a common inpatient categorization. I then re-estimate equation (1),

replacing the dependent variable with an indicator for whether the resident died in-hospital with

each MDC code.

Additionally, I examine how nursing homes themselves contribute to the mortality effect. Walsh

et al. (2012) identify a set of primary diagnoses (such as infection, falls, and bed sores) that, when

long-stay residents are hospitalized with them, indicate poor nursing home quality. Increases in

‘preventable’ hospitalization with these diagnoses during the period of a nursing home exit may

reflect the facility’s failure to provide adequate care during the transition. As before, I re-estimate

equation (1), replacing the dependent variable with an indicator for whether the resident was

hospitalized with any of these diagnoses. With all hospitalization regressions, I summarize the

dynamic treatment effects dτit in equation (1) into short-run (relative quarters zero and one) and

long-run (relative quarters two and up) effects for brevity.

4 Mortality Results

4.1 Effects of Nursing Home Exits on Mortality

Overall Mortality — The quarterly (βτ ) and cumulative (∆Mt) mortality estimates are plotted in

Figure 4 and summarized in Table 2. The top panel of Figure 4 presents the main results, for the
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(a) Residents in facility 2 quarters prior to closure
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(b) Residents in facility 4 quarters prior to closure

Figure 4: Mortality effects of nursing home exit on current residents
Notes: Figures present the results from estimating equation (1). The quarterly mortality estimates
(the βτ coefficients) capture the per-period change in mortality probability, conditional on surviving
to quarter t. The cumulative mortality estimates (∆Mt) capture the cumulative effect on the
baseline cohort up to period t. The top panel presents the results for the main sample: residents
in a facility two quarters prior to exit. The bottom panel presents results for residents who were
in the facility four quarters prior to the closure date, allowing for comparison of parallel trends
between the treatment and control groups.

resident cohort present in relative quarter τ = −2. These results indicate a sharp short-run increase

of 1.14 percentage points in quarterly mortality for long-term care residents of nursing homes that

exit. This is a frail group of patients – the baseline quarterly mortality in the control group is 7.2%

– and so the estimates correspond to an approximately 15.7% relative increase in mortality risk

during the quarter of nursing home exit. Following the initial increase in mortality risk, changes

in cumulative mortality fall and become negative by the seventh quarter after closure. Cumulative

mortality continues to decline, and by the third year after closure settles at 1.23 percentage points

lower than if resident mortality rates had evolved parallel to the control group.

To assess the validity of this assumption – that the treatment and control group mortality rates

would have evolved in parallel in the absence of a nursing home exit – I construct a separate cohort

to examine any differences in pre-trends. The bottom panel of Figure 4 presents estimates for

a cohort of residents who were present in the nursing home one year prior to exit. There is no

diverging mortality trend between the treatment and control groups in the time leading up to the

event. Moreover, I find very similar point estimates using this sample as I do with the τ = −2

cohort. Of course, the further back the baseline period is set the more the treatment effect becomes

attenuated due to attrition, and so I use the τ = −2 cohort for estimation of the main effects.

Where do displaced residents go? In Appendix Figure C.2, I calculate the share of the surviving

cohorts who remain in any nursing home by quarter. For the treatment group in the post-exit

period, this assessment necessarily occurs in a different facility. I find that the vast majority
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of residents do transfer to another facility, and that in the first quarter after closure, 84.6% of

surviving residents still appear in another nursing home. To examine how much transferred patients

contribute to the mortality increase, I re-estimate the mortality regression (1), while restricting my

sample to continuous quarters in which the patient is still present in (any) nursing home. The

results are plotted in Appendix Figure C.3. I find that the mortality trends look similar in this

subgroup of transferred patients, though the effects are somewhat attenuated.

Patient Heterogeneity — A large share (56.6%) of long-term residents suffer from Alzheimer’s

disease or another dementia. These are patients for whom transfers to another facility (a sudden

change in environment) may be particularly costly. I examine heterogeneity in the mortality effect

by Alzheimer’s status in Appendix Figure C.4. Indeed, I find a particularly large initial mortality

effect of 1.98 percentage points in this subgroup. Similar heterogeneity exists when subsetting by

age at baseline: patients who are at least 80 years old experience an extremely sharp 2.40 percentage

point increase in mortality immediately after closure, whereas younger patients experience only a

0.57 percentage point increase (Appendix Figure C.5).

Robustness — To assess the importance of risk-adjustment (the patient-level covariates Xit

in equation (1)), I estimate several cumulative mortality effects, iteratively adding more patient

covariates. The stability of these results across specification, shown in Appendix Figure C.6 (which

omits the estimates of βτ for clarity), demonstrates that the role of the covariates is limited. The

inclusion of demographic controls very slightly attenuates the estimate ∆Mt, and the additional

health status indicators (fixed at baseline) from the MDS also very slightly attenuate the estimates.

I also consider an alternative specification, in which I include 24 chronic condition indicators which

are derived from Medicare claims, available from the Beneficiary Summary File. These controls

have the benefit of accounting for an exhaustive list of chronic conditions, but unfortunately are

defined only for the approximately 88.3% of patients who are enrolled in Traditional Medicare,

and so the results that rely only on the MDS are my preferred specification. I find very similar

effects using this specification, in Appendix Figure C.7. These results suggest that concern over

the residual imbalance indicated by Table 1 is minimal.

4.2 Heterogeneity by Market Concentration

In light of the concerns over rural nursing home access detailed in Section 2.1, and the geographic

differences in nursing home contraction demonstrated in the bottom panel of Figure 1, I turn next

to heterogeneity in the mortality effect of a closure by the level of local nursing home market con-

centration. Mirroring Gandhi, Song, and Upadrashta (2020)’s study of private equity acquisitions

of nursing homes, I calculate a Herfindahl-Hirschman Index (HHI) using total bed capacity within

10 kilometers9 of each facility in the year prior to exit. The distribution of resulting HHIs in the

9. Although this radius is fairly tight, it is selected to match Gandhi, Song, and Upadrashta (2020) who note that
given extremely patient strong preferences for nearby facilities, nursing home markets are much more localized than
even a county, and so this radius exceeds the median distance traveled by patients (Hackmann 2019). Moreover,
Appendix Figure C.10 demonstrates that using a more standard county-level HHI measure generates nearly identical
results.

17



−4

−3

−2

−1

0

1

2

3

4

5

−2 −1  0  1  2  3  4  5  6  7  8  9 10 11 12
Quarters relative to closure

M
or

ta
lit

y 
ch

an
ge

 (
pe

rc
en

ta
ge

 p
oi

nt
s)

Cumulative Mortality
Quarterly Mortality

(a) Competitive Markets
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(b) Concentrated Markets

Figure 5: Mortality change by market concentration
Notes: Figures present the results from estimating equation (1) for the baseline cohort. The
quarterly mortality estimates (the βτ coefficients) capture the per-period change in mortality prob-
ability, conditional on surviving to quarter t. The cumulative mortality estimates (∆Mt) capture
the cumulative effect on the baseline cohort up to period t. The top panel presents the results
for residents of facilities in competitive markets (pre-closure HHI below 5,000). The bottom panel
presents results for residents of facilities in concentrated markets (pre-closure HHI above 5,000).

analysis sample is presented in Appendix Figure C.8. Approximately 25% of facilities are at least

duopolists (HHI ≥ 5, 000); these facilities are defined as operating in concentrated markets, and

the remainder as competitive.

I estimate equation (1) separately by each competition group. Figure 5 presents the results. I

find strong evidence of treatment effect heterogeneity: residents of nursing homes in competitive

markets experience the smallest initial spikes in quarterly mortality (1.08 percentage points), and

by 12 quarters after closure have a cumulative mortality probability that is 1.82 percentage points

lower. Conversely, residents of facilities in concentrated markets experience a very large initial

mortality increase in the period immediately following closure (1.36 percentage points), and at no

point have a cumulative mortality effect that falls below zero.

I examine to what extent these diverging effects are driven by compositional differences in own-

ership across different markets, given that for-profit facilities are commonly associated with lower

quality. I re-examine the concentration results by restricting the sample to exiting for-profits and

non-profits, separately. The cumulative mortality effects ∆Mt corresponding to separate regres-

sions from each intersection of ownership status by market concentration are plotted in Appendix

Figure C.9.10 The only patients who experience long-term survival improvements are those in

for-profit facilities in competitive markets. Patients in non-profits that exit only experience large

initial mortality spikes, and never enjoy survival gains, regardless of their market concentration.

10. For clarity, I omit the quarterly mortality estimates βτ .
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Full Sample Competitive Concentrated

(1) (2) (3) (4) (5) (6)

βSR 1.11*** 1.14*** 1.05*** 1.08*** 1.31*** 1.36***
(0.12) (0.12) (0.14) (0.14) (0.26) (0.26)

βLR -0.51*** -0.46*** -0.49*** -0.44*** -0.58** -0.52**
(0.08) (0.08) (0.09) (0.09) (0.18) (0.18)

∆M1 1.83*** 1.90*** 1.34*** 1.41*** 3.43*** 3.51***
(0.29) (0.29) (0.32) (0.33) (0.61) (0.61)

∆M4 0.94* 1.22** 0.55 0.80 2.20** 2.57**
(0.41) (0.41) (0.47) (0.47) (0.85) (0.86)

∆M8 -0.66 -0.21 -1.13* -0.71 0.79 1.37
(0.48) (0.49) (0.55) (0.56) (0.99) (1.00)

∆M12 -1.68*** -1.23* -2.24*** -1.82** 0.06 0.61
(0.49) (0.50) (0.56) (0.57) (1.00) (1.01)

N 3,577,643 3,577,643 2,819,126 2,819,126 758,517 758,517
Dep. Var Mean 6.27 6.27 6.13 6.13 6.76 6.76
Controls Base Full Base Full Base Full

Table 2: Short-run and Long-run Mortality Effects of Nursing Home Closures

Notes: Table summarizes the main mortality effects of nursing home closures. Top panel summa-
rizes the mortality hazards β into short-run (relative quarters 0-1) and long-run (relative quarters
2+). The next panel reports the cumulative mortality effects ∆Mt at several benchmarks after
closure, including one quarter, one year, two years, and three years following closure. Columns
(1) and (2) report results using the full sample. Columns (3) and (4) report results restricted to
residents of nursing homes that were in competitive markets prior to exit. Columns (5) and (6)
report the corresponding results for concentrated markets. All standard errors are clustered at the
original facility level.

4.3 Reallocation Across Facilities

Turning to the mechanisms behind the mortality results, I consider two primary measures of nursing

home quality to examine the role of patient reallocation in driving the long-run mortality reductions.

Relying on the results of annual deficiency inspections for the universe of certified facilities, I

compute the number of ‘quality of care’ deficiency citations per bed. These citations correspond to

care-related violations (such as nursing, rehabilitation, or pharmacy) rather than, for instance, fire

safety infractions. Additionally, I examine changes in the presence of severe deficiencies indicating

actual patient harm or immediate jeopardy. By construction, patients who do not transfer to a

new facility are excluded from these analyses. To ensure compatibility in the measures across time,

I fix the deficiency counts at their levels prior to the closure.

These results, documented in Figure 6, indicate that when residents transfer, they move to

facilities with substantially fewer deficiency citations, including severe deficiencies. The rate of

care citations per bed in the facility to which a patient transfers is 36.9% lower than the closing

facility. Similarly, patients experience a 9.92 percentage point drop in the likelihood of any severe

deficiency, from a baseline rate of 33.1%. Appendix Figure C.12 documents an identical decline
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Figure 6: Changes in Deficiency Citations
Notes: Figures present how patients reallocate following their displacement from a closing nursing
home. Both panels present βτ estimates of equation (1), with the dependent variable replaced
with a measure of facility quality. Panel (a) shows the reduction in the number of ‘quality of care’
deficiencies per bed. Panel (b) documents the decline in the probability of at least one severe
deficiency citation for placing a resident in actual harm or immediate jeopardy. Patients who do
not transfer to a new nursing home are excluded.

in the rate of total deficiencies. These results are consistent with the mortality results indicating

substantial benefits from patient reallocation.

Finally, an important welfare consideration in assessing nursing home closures is the distance

patients must travel to seek care, which is known to reduce visitation from friends and family thus

increase feelings of isolation (Greene and Monahan 1982; Port et al. 2001; Gaugler 2005). Recent

evidence during the Covid-19 pandemic of the deleterious effects of isolation on well-being further

underscores the importance of family visitation for nursing home residents (Levere, Rowan, and

Wysocki 2021; Stall et al. 2021). Revealed preferences indicate that geographic proximity is a

dominant factor in long-term care choice, as residents overwhelmingly select nearby nursing homes

over higher quality facilities.11 The toll of long travel distances are well-described in several recent

media accounts of the costs of the current wave of rural nursing home closures (Healy 2019; Saslow

2019). To examine how distance from home changes, I re-estimate equation (1), replacing the

dependent variable with a distance measure from the patient’s home zip code.12 Both log (Figure

7) and linear (Appendix Figure C.13) specifications suggest a substantial increase in travel distances

following nursing home closure, with the largest increases occurring for patients in areas where few

alternatives remain. Given the preferences patients reveal for proximity when choosing a nursing

11. For instance, Gandhi (2020) estimates an average demand elasticity with respect to distance of 4.15%, and an
average demand elasticity with respect to quality of only 0.59%.

12. I recover this from the Medicare enrollment records. Specifically, I pull the last observed zip code prior to the
patient’s first nursing home assessment in the MDS. Prior to 2010, the MDS also reported each resident’s home zip
code; I use this variable for patients whose stays began prior to 2000.
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Figure 7: Distance from home zip code

Notes: Figure shows how far patients are displaced following their nursing home closure, presenting
βτ estimates of equation (1) with the distance from the resident’s home zip code to their current
nursing home in each quarter as the dependent variable. Distance is determined using the resident’s
last 5-digit zip code (from the Medicare enrollment records) prior to their initial nursing home stay.
Heterogeneous effects are estimated jointly, interacting the concentration measure with the relative
time indicators. Patients who do not transfer to a new nursing home are excluded.

home, these results imply a substantial welfare loss for displaced patients even independent of the

mortality results.

4.4 Hospitalizations

The sharp increase in mortality risk following nursing home closure raises the question of what

drives the increase. For instance, patients may face greater risk of neglect as the facility undergoes

the closure process (as staff leave), and risk medical conditions such as developing pressure ulcers

or falling. To learn about the procedures that go into place during the period of the closure –

including changes in facility quality during the final weeks of a facility’s life as well as the risks

associated with transfers to new firms, for patients who do so – I examine changes in hospitalization

risk using a slightly condensed version of regression equation (1).

To examine changes in overall hospitalization risk, I estimate an analog of equation (1), replacing

the dependent variable with a hospitalization indicator, and collapsing the relative time indicators

into short-run (relative quarters 0-1) and long-run (2+ quarters following closure). In addition to

the ‘preventable hospitalizations’ described in Section 3.3, I also examine in-hospital deaths with

a variety of different conditions. These results are summarized in Table 3, and the event study for

the risk of any hospitalization is also plotted in Appendix Figure C.11.

These results reveal a substantial increase in the risk of any hospitalization following facility

exit: residents face a short-run 2.84 percentage point increase in the risk of any hospitalization.
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Baseline, % Short-Run Long-Run
β Percent β β Percent β

(1) (2) (3) (4) (5)

Any Hospitalization 13.33 2.84 (0.19)*** 21.3 (1.4)*** 0.55 (0.17)** 4.1 (1.3)**
Any Preventable Hospitalization 5.04 1.13 (0.12)*** 22.5 (2.3)*** 0.22 (0.09)* 4.4 (1.8)*

Preventable Hospitalization
Infections 3.23 0.74 (0.10)*** 22.9 (3.0)*** 0.06 (0.07) 1.8 (2.3)
Falls/Injuries 1.04 0.24 (0.04)*** 23.4 (4.0)*** 0.14 (0.03)*** 13.5 (2.7)***
Nutrition/Hydration 0.37 0.08 (0.03)** 22.4 (8.0)** 0.02 (0.02) 6.7 (5.4)
Bed Sores 0.35 0.08 (0.03)** 23.2 (8.2)** 0.00 (0.02) 0.5 (5.7)
Psychosis 0.19 0.04 (0.02)* 23.2 (11.4)* 0.00 (0.02) 1.3 (8.5)

Any In-hospital Death 0.32 0.28 (0.05)*** 87.1 (16.0)*** -0.07 (0.03)** -21.4 (7.9)**
In-hospital Death with Diagnosis

Infectious/Parasitic Diseases 0.04 0.08 (0.02)*** 212.0 (46.5)*** -0.01 (0.01) -17.9 (26.4)
Respiratory System 0.08 0.07 (0.02)** 79.7 (30.1)** -0.01 (0.01) -12.8 (14.0)
Endocrine/Nutritional/Metabolic 0.01 0.03 (0.01)** 209.8 (76.9)** 0.00 (0.00) -19.0 (33.8)
Kidney/Urinary Tract 0.02 0.02 (0.01) 100.9 (56.8) -0.01 (0.01)* -52.4 (25.1)*
Digestive System 0.02 0.02 (0.01) 82.0 (72.2) -0.01 (0.01) -40.6 (31.4)
Musculoskeletal 0.01 0.01 (0.01) 111.6 (87.9) 0.00 (0.00) -18.0 (39.3)
Nervous System 0.02 0.00 (0.01) 29.6 (64.9) -0.01 (0.00) -56.8 (31.4)
Circulatory System 0.05 -0.01 (0.02) -22.6 (36.7) -0.01 (0.01) -26.5 (17.6)

Table 3: Hospitalization Results

Notes: Table reports the hospitalization rates for the baseline resident cohort. Each row corresponds
to a different estimation of equation (1) using the dependent variable listed. Column (1) reports
the control group mean at baseline. Columns (2) and (4) report the short- and long-run effects
(corresponding to relative quarters 0-1 and 2+) of nursing home closure, respectively. Columns
(3) and (5) scale the corresponding β point estimates by the baseline means, to present a relative
change. All standard errors are clustered at the original facility level.

Restricting to the subset of ‘preventable’ hospitalizations among long-stay nursing home residents

(Walsh et al. 2012), I estimate a 1.13 percentage point increase in the risk of any preventable

hospitalization. This corresponds to a consistent 23% relative increase across diagnosis groups,

including infections, falls/inuries, and bed sores. In the long-run (two or more quarters following

facility closure), hospitalization risks return much closer to their baseline levels, though do remain

slightly elevated. These results are consistent with declines in facility quality during the period of

the closure, in addition to the potential risks inherent to transfers in this population.

Turning to changes in within-hospital death, which I use to approximate cause-of-death as

this is not recorded in the MDS assessments, I find that about a third of the short-run mortality

effect is driven by deaths in the hospital. Of these deaths, the largest short-run increases (relative

to their baseline rates) are for patients who die with infectious/parasitic diseases (212.0%) and

endocrinological, nutritional, and metabolic diseases (209.8%). These rates return to their baseline

levels in the long-run. As before, the prevalence of these conditions are consistent with the provision

of inadequate nursing care during the period of the closure.
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5 Empirical Model of Nursing Home Exits

Motivated by the evidence on the consequences of nursing home closures on incumbent resident

mortality and subsequent reallocation, I turn next to an empirical model of the nursing home

industry with endogenous firm exit. In the model, nursing homes observe patient demand and

current variable profits, and decide whether to pay a sunk cost of staying or to permanently exit.13

Firms are endowed with exogenous quality levels, and compete on the decision of whether to

continue. The equilibrium concept is Markov perfect. The estimated model allows me to examine

how counterfactual reimbursement policies would impact the number of nursing home exits, as well

as to compute their implied effects on consumer surplus. Moreover, by combining the structural

model with the mortality effects estimated in Section 4, I am able to evaluate the distributional

impacts of these counterfactual reimbursement policies on resident life expectancy.

5.1 Primitives

In every period (year) t, a set Jt of nursing homes is active, and each j ∈ Jt decides the price charged

to private patients, Pjt. Each nursing home j is also characterized by a number of observable

quality-of-care deficiencies Wjt, and by a per-patient per-day (marginal) cost MCjt.

Given the collection of private prices PJt = {Pjt}j∈Jt , and quality vectors WJt = {Wjt}j∈Jt new

patients allocate across nursing homes. Specifically, for a new patient i, the probability of choosing

nursing home j in t is

sijt (PJt ,WJt ; Jt) , (3)

and if LOSi is the patient’s length of stay, then average (per-bed) variable profit for nursing home

j is

πjt (PJt ,WJt ; Jt) =
1

bedsjt

∑
i

sijt (PJt ,WJt ; Jt)LOSi(Rjt −MCjt). (4)

In this expression Rjt is the average per-diem revenue, which depends on Pjt but also on the

Medicaid and Medicare reimbursement rates. Because I do not observe the share of i’s stay covered

by the various payers, I instead assign the facility-year level average of rates across the three primary

payers (Medicare, Medicaid, and the private price), weighted by their share of overall days, which

I observe at the facility-year level.

After new admissions are determined and firms realize their variable profits πjt, each firm ob-

serves a private sunk cost of continuing to the next period, κjt, which is drawn from the distribution

Fκ. Firm j then makes a binary decision whether to exit (and receive zero) or to pay κjt to continue

to period t+ 1. Firms that close may not return, and so exiting is a terminal state.

13. It is important to note that I do not model the entry decision. Given the very limited entry observed over
the sample period (Section 2.1), this assumption likely makes little difference, as the estimated entry costs would be
prohibitively high.
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The game played by nursing homes can therefore be summarized as follows:

1. Firms choose prices PJt paid by private (i.e., non-Medicaid and non-Medicare) patients.

2. Quality-of-care deficiencies WJt are realized.

3. New patients arrive, patients allocate, and firms realize variable profits πjt, j ∈ Jt.
4. Each firm receives an independent sunk cost draw from a known distribution Fκ.

5. Firms choose to exit (receive zero) or continue (pay κjt).

6. Continuing firms move to the next period.

5.2 Demand Parametrization

Nursing home demand is fully static, as in Hackmann (2019). Each period t, a fixed cohort N of

new patients arrive and select a facility at which to receive nursing home care. Patients vary in

their payer status, reflecting that some patients are exposed to private daily prices PJt at some

point in their stay and others, whose stays are fully covered by public insurers, are not. Due to

data limitations, I abstract from any cost-sharing borne by public patients, such as any coinsurance

paid during the Medicare-funded portion of their stay.

Demand is determined as follows: patient i with payer type ψ ∈ {public,private} considering

nursing home care chooses among all facilities j open in year t, to maximize her indirect conditional

utility:

uψijt = αd log(Distij) + αdefsψ Wjt + αpPψjt + ξψjt︸ ︷︷ ︸
δψjt

+εijt (5)

where log(Distij) is the log-distance between resident i’s home zip code centroid and the address of

facility j. Wjt is the number of quality-of-care deficiency citations per bed in facility j in year t. Pjt

is the per diem price paid only by private patients. ξjt captures unobserved (to the econometrician)

facility quality. εijt is an independent and identically distributed type-1 extreme value taste shock.

Distinguishing between patients of differing payer types is crucial for estimating the price sen-

sitivity parameter αp. Specifically, I define public patients as those whose stays were fully covered

by Medicare (which I observe directly using the Medicare claims14 linked to the MDS assessments)

or those patients who were enrolled in Medicaid for the full duration of their stay.15 Patients whose

stays outlasted the Medicare coverage window and were not enrolled in Medicaid for at least some

duration of their stay are assumed to have paid the private daily prices.16 To compute the consumer

surplus changes under the counterfactual policy experiments, I assume that public patients share

the private patient marginal utility of income αp. Additionally, for greater flexibility I allow the

terms parameterizing taste for quality αdefsψ as well as unobserved facility quality ξψjt to vary by

payer type, anticipating that private and public patients may vary in their sensitivity to quality.

14. By necessity, I classify all Medicare Advantage enrollees as public patients, as I do not observe their Medicare
claims, and so they do not contribute to estimation of the price elasticity.

15. I observe only monthly Medicaid enrollment, not individual Medicaid claims.
16. Reassuringly, this assignment rule seems to perform well. The price sensitivity parameter I estimate in Section

6 is quite similar to the one recovered by Hackmann (2019), who does observe Medicaid claims.
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Collecting facility-payer-year specific terms together into δψjt, I can now express the probability

that patient i with payer type ψ arriving in year t chooses facility j using the familiar logit choice

structure (McFadden 1974; Berry 1994):

sijt (PJt ,WJt ; Jt) =
exp
(
αd log(Distij) + δψjt

)∑
k∈Jt exp

(
αd log(Distij) + δψkt

) (6)

where Jt contains the set of all within-state operating nursing homes in year t in the state.

5.3 Optimal Exit Decisions

Because demand evolves exogenously each period as new patients arrive, the relevant state space

for the exit decision can be summarized by

S = {sijt ∈ [0, 1]|Jt| | i ∈ N}. (7)

In estimation, I will discretize and approximate this state space to reduce dimensionality. Section

6 contains details on the approximating state variables. I consider the firm’s exit decision at the

end of each period, after prices have been determined, and so I abstract away from the optimal

pricing decision.

Given the stage timing, the Bellman equation for the value of an active firm can be written as

a simple function of the firm’s demand sjt and the sunk cost draw κjt:

V (sjt;κjt) = πjt + max
{
βV c(sjt)− κjt, 0} (8)

where πjt is the stage variable profit earned by firm j given s, V c(sjt) is the continuation value

from staying and 0 < β < 1 is the discount rate. This implies the simple decision rule that firms

exit if κjt > βV c(sjt), or if the costs of staying outweigh the discounted expected benefits of doing

so.

With the known distribution of sunk costs Fκ, the probability that firm j exits given sjt can be

expressed as:

Pr(exitjt|sjt) = 1− Fκ
(
βV c(sjt)

)
. (9)

Letting (s′, κ′) denote next-period variables, omitting subscripts for simplicity, and—with a slight

abuse of notation—π(s) the variable profit in state s, the continuation value V c(s) can be written

as:

V c(s) = Es′
[
π(s′) + Eκ′

[
max

{
βV c(s′)− κ′, 0

}]]
= Es′

[
π(s′) + Fκ(βV c(s′))

[
βV c(s′)− Eκ′(κ′|κ′ ≤ βV c(s′))

]]
. (10)

I assume that κjt follows an exponential distribution with rate parameter 1/κ and so equation (10)
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simplifies to the following convenient form:17

V c(s) = Es′
[
π(s′) + βV c(s′)− κFκ(βV c(s′))

]
. (11)

Equation (11) illustrates the straightforward interpretation of the continuation values, as the sum

of expected stage profits and the future continuation value, less the expected cost of continuing.

After discretizing the state space and specifying a transition matrix, equation (11) can be solved for

the continuation values using the nested fixed point approach. However, to speed up estimation,

two-step conditional choice probability (CCP) methods can be used to sidestep computing the fixed

point for each guess of the parameter κ (Hotz and Miller 1993; Bajari, Benkard, and Levin 2007;

Aguirregabiria and Mira 2007). In estimation, I employ the matrix inversion approach of Pakes,

Ostrovsky, and Berry (2007), which I detail in Section 6.

6 Model Estimation

6.1 Observables and Estimation Overview

Estimation proceeds sequentially, following the stage timing outlined in Section 5.1. The demand-

and supply-sides of the model are estimated separately, with the demand estimates used as inputs

in the dynamic supply estimation. The estimation procedure spans several datasets and sets of

years, and I summarize each of the data sources used in Appendix Table C.1.

The demand-side of the model is estimated using micro choice data from new nursing home

admissions, which I construct using admission assessments from the MDS. Due to data access, I

restrict my attention to only Illinois nursing home admissions spanning 2012-2017, as I observe

facility-year level Medicaid and private daily rates using state cost reports from this period. In

addition to data availability, Illinois is a particularly appealing venue for studying the impacts

of counterfactual reimbursement policies on nursing home exits. The state saw the fourth most

closures over my sample period (following California, Texas, and Ohio), which providers have

alleged is owed to the state’s low Medicaid rate. Indeed, a group of providers sued the state in 2018

– following the end of my sample period – claiming the low reimbursement rates will cause them

to shutdown, thereby limiting access for Medicaid patients (Rucinski 2018).

While Illinois has witnessed a high rate of nursing home exits, there are still too few closures

in the state during my sample window (N = 18 from 2012 to 2017) to provide consistent estimates

of the exit cost parameter κ. For this reason, I make use of my full national sample of exits to

estimate the supply-side of the model. As I do not have demand estimates for nursing homes

outside of Illinois (or those in Illinois beyond the 2012-2017 window), I must rely on a reduced form

profit function and an approximation to the model state space. Specifically, I approximate the

17. The assumption that sunk costs are exponentially distributed is not crucial, though it does appear to fit the
data well (Section 6), and enables the matrix inversion used to estimate the continuation values V c, speeding up
estimation.
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state space (the demand vector s, which is unobserved for most firms) with a pair of annual state

variables z: each facility’s occupancy rate and share of Medicaid patients, both of which I observe

nationally. These variables capture two key dimensions of demand, and are strongly predictive

of variable profits (Figure 2). To accommodate the endogeneity concern that facilities in areas

with low occupancy or high Medicaid shares operate in areas that are otherwise unprofitable, I

supplement the reduced form profit function with county-level fixed effects.

To construct the reduced form profit function, I rely on the nationally available Medicare cost

reports to construct firm-year level measures of revenues and variable costs from 2011-2019.18 Recall

the aim of the model is to estimate the sunk cost parameter κ, and the payoffs in each state are

variable profits. In principle, because the cost data contain measures of accounting fixed costs, I

could estimate the sunk cost parameter directly. However, there are substantial limitations to this

simpler approach, related to the distinction between accounting and economic profits. The fixed

costs reported in the data are not necessarily the same as the model-relevant sunk costs (which

will, for instance, contain scrap values). Further, there are known issues with the accounting of

fixed costs in this setting. Specifically, many nursing home owners legally separate their firms

into property management and operating companies, with the aim of masking profits as rental

payments (Harrington et al. 2021). As a result, while variable costs (primarily, direct care labor)

are well-measured, the accounting fixed costs are frequently inaccurately reported.

Thus, I relate the firm’s reported variable profits to the observed state variables (occupancy

and Medicaid shares) using a reduced form profit function. To augment estimation, I supplement

this reduced form profit function with the micro moments implied by equation (4), incorporating

the demand estimates for the Illinois sample. This profit function is then sufficient to estimate the

sunk cost parameter κ, using the observed exit rates in each state.

There is a key limitation to this approach to estimating the supply side. Specifically, given

the state space approximation, I ignore the oligopoly game played between firms. There are both

data availability and computational restrictions for this. Even if one were to observe the true states

(i.e., demand vector s for all firm-years), the dimensionality of the state space is prohibitively large:

given by 2N , where N is the number of active firms. In Illinois, N = 634, making computing the

continuation values for each point in the state space impossible. A consequence is that I will be

restricted to only myopic single-agent counterfactuals when I consider alternative reimbursement

schemes, rather than simulating equilibrium outcomes.

Next, I provide more detail on the estimation procedure, beginning with the demand-side of

the model. Interested readers can skip to Section 6.4 for the estimation results.

6.2 Demand Estimation

In the model, firms take demand as given and so I begin by estimating the demand-side of the

model. I employ a two-step procedure which follows Hackmann (2019).

18. The accounting measures in these data are notoriously unreliable prior to 2011. While a longer panel is available
after 2019, a large idiosyncratic shock hit the industry in 2020.
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Step One: I estimate preferences over distance, αd, and the payer-specific mean utilities δψjt. For

identification, one mean utility per year is normalized to zero. This step is estimated via maximum

likelihood, relying on the individual choice data and the logit choice probabilities in equation (6).

Step Two: In the model, firms observe ξψjt before choosing prices Pjt. Thus, prices are endoge-

nously determined, and so I require instruments to recover the price coefficient αp. Given the rich

cost data available, I use the average costs (per patient-day) of nearby competitors to estimate

the taste parameter on private per diem price. The logic of such instruments, standard in indus-

trial organization, is that costs affect prices, but do not directly enter the utility function given by

equation (5). I estimate αdefsψ and αp using two-stage least squares, and recover ξψjt as the residuals.

6.3 Supply Estimation

Supply estimation proceeds in three steps. In the first step, I construct and discretize an approx-

imate state space to the demand vector s, which has low enough dimensionality to resolve the

computational burden, in addition to providing states for the firms lacking demand estimates. I

also compute the transition probability matrix using the observed frequencies in the data. In the

second step, I relate the observed approximating state variables (Medicaid share and occupancy

rate) to variable profits using a reduced form profit function. Because I supplement this estimation

with the demand moments from equation (4), I estimate the reduced form profit using the gener-

alized method of moments. In the final step, I use the profit parameters to estimate the sunk cost

parameter κ, using the method of moments approach introduced by Pakes, Ostrovsky, and Berry

(2007).

Step One: The state variables I use to approximate the state space are the occupancy rate occjt

and the share of Medicaid patients mcaidjt of firm j in year t. I discretize each of these terms

into 6 equally sized bins. To accommodate the concern that areas with more Medicaid shares may

be unobservably less profitable, I estimate a regression of firm-year average variable profits on the

resulting (occjt,mcaidjt) pairs and a set of county fixed effects. However, including each of these

fixed effects would explode the state space again, and so I follow Dunne et al. (2013) and group the

fixed effects into 4 equally sized bins. This substantially reduces the computational requirements,

while the estimated fit remains quite high: the R2 moves from 0.532 to 0.512 when moving from a

full fixed effects approach to the binned fixed effects. The state variables are then denoted by the

triple zjt = (occjt,mcaidjt, countyjt), where countyjt is the county fixed effect bin. The resulting

state space is then of length 6× 6× 4 = 144.

I impose an additional assumption that the state variables zjt evolve according to a Markovian

transition matrix Fz. To calculate the empirical transition probabilities, I exploit the fact that

while some state variables evolve, the county fixed effects do not change over time. Hence, I can

write F (occ′,mcaid′, county|occ,mcaid, county) = F (occ′,mcaid′|occ,mcaid) · Icounty, and estimate

each smaller matrix using their observed frequencies in the data.

Step Two: I estimate a nonlinear profit function g(·) containing a coefficient θ for each point

in the state space, using a GMM estimator aided by two sets of moments. First, I use only
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‘macro’ moments, which relate the state variables zjt (covering the national panel of facilities) to

the accounting variable profits πmacrojt (also covering the national panel). Second, I supplement

the macro moments with ‘micro’ moments coming from only the Illinois facilities with demand

estimates. The micro-moments relate the model-implied profits π̂jt with the state variables for

only the Illinois facilities, denoted zILjt . For the policy exercises in Section 7 I will need to compute

the state variables zjt under counterfactual allocations using the micro-data, and so for completeness

I also include an additional set of moments, which equate the model-implied profits π̂jt with the

model-implied state variables ẑILjt .19 Hence, these moments then include:

E
[
πjt − g(zjt; θ)

]
= 0

E
[
π̂jt + ψ − g(zILjt ; θ)

]
= 0

E
[
π̂jt + ψ − g(ẑILjt ; θ)

]
= 0

where I include an additional intercept ψ in the micro moments to account for any level differences

in the reported profits and the model-implied profits. Denoting the corresponding sample analogues

G1, G2, and G3, I stack these moments and refer to the stacked row vector as:

G(θ) =

[
G1, G2, G3

]
The GMM estimator is then given by:

θ̂GMM = argmin
θ

G(θ)WG(θ)′

where W is a diagonal weighting matrix. I use the two-step efficient GMM estimator (Hansen 1982)

of θ from the stacked moments. See Appendix A.1 for more details on this procedure.

Step Three: With the profit function in hand, I can compute the continuation values V c eval-

uated at each point in the state space for a given value of κ. While equation (11) is contraction

mapping, and therefore relatively easy to solve using the nested fixed point algorithm for each guess

of the parameter κ, Pakes, Ostrovsky, and Berry (2007) point out that one can side-step solving

the fixed point for each guess of the parameters by iterating forward the value of V c infinitely many

periods. Performing this forward iteration and replacing the states s with their approximations z,

equation (11) can be rewritten in matrix form as:

V c =
[
I − βFz

]−1
Fz
[
π − κ(1− Pr(exit))

]
(12)

where I is the identity matrix and Pr(exit) contains the exit probabilities in each state. Hence, the

continuation values can be easily computed using consistent estimates of the transition and exit

19. Notice that the model-implied state variables for the Illinois facilities ẑILjt may differ from their corresponding
observed state variables zILjt ; because I will use the model to compute states in counterfactual allocations, I include
these moments in the estimation procedure.
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probabilities, in addition to the stage profits π in each state. I assume a discount factor of β = 0.9.

The nonlinear function estimated in the second step provides a consistent estimate of π in each

state, and I use the empirical exit rates to compute Pr(exit) in each state. I can therefore estimate

the exit cost parameter κ using the moments suggested by equation (9). Specifically, I match the

observed exit rates in each state with those implied by the model.20

6.4 Model Estimates

Table 4 presents summary statistics on the annual facility panel used to estimate the dynamic

component of the model. Firms report about $36,000 per bed in variable profits, though firms that

exit tend to report significantly lower profits (about $26,000 across years), and particularly so in

their last year prior to exit (falling to $22,000). Similarly, exiting firms report lower occupancy

rates (70% vs 81%) and higher shares of Medicaid patients (69% vs 64%) at a given point in time,

consistent with the preliminary patterns shown in Figure 2.

All Stayers Exiters
All Years Exit Year

(1) (2) (3) (4)

Income (per-bed) 83.93 84.34 65.65 59.71
Variable Profit (per-bed) 36.09 36.31 26.23 22.29
Accounting Fixed Cost (per-bed) 26.64 26.73 22.28 21.38
Share Medicaid (%) 63.56 63.44 68.69 70.27
Occupancy (%) 80.86 81.10 70.08 63.74
Pr(Exit) 0.005 0.000 0.221 1.000
Observations 105,125 102,835 2,290 506
Firms 13,172 12,666 506 506

Table 4: Facility Panel Summary Statistics

Notes: Table reports sample statistics on the facility panel used to estimate the supply side of the
model as described in Section 6. All financial terms are denominated in 2017 dollars, and expressed
in thousands.

The first-stage estimates from the IV estimation of the price sensitivity parameter αp are re-

ported in Appendix Figure C.14. I find that competitors’ variable costs are strongly predictive of

the current firm’s price, with an F-statistic of 92.1. The remaining demand and sunk cost estimates

are reported in Table 5. The results imply that private patients have a much stronger taste for

quality: these patients exhibit a willingness to pay of $11.2 to move down one standard deviation

in the deficiencies measure whereas public patients value the same improvement at only $3.0 per

day. However, I find that the taste for distance strongly dwarfs both groups’ taste for quality. The

demand results suggest that patients would be willing to pay an additional $73.50 per day to avoid

20. I can also estimate the model using maximum likelihood, but Pakes, Ostrovsky, and Berry (2007) note that the
method of moments is preferable when exit rates are very small, as the estimates are more robust to noise in the
continuation values.
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Variable Parameter Estimate Mean SD

log(Distance) αd -1.746 14.7 27.1
(0.001)

Public Private

Deficiencies αdefs -1.131 -4.254 0.057 0.050
(0.515) (0.782)

Price αp — -0.019 213.6 85.8
(0.003)

Patients N 609,001

Sunk Cost κ 41.770 54.746

Including Micro-Moments No Yes

Table 5: Demand and Supply Estimates

Notes: Table reports estimates from the demand system and estimates of the unobserved sunk cost
parameter. The distance summary statistics (mean and SD) are reported in kilometers. Deficiencies
are measured per bed. The price and sunk cost parameters correspond to 2017 dollars. The sunk
cost parameter is expressed in thousands.

a 10 kilometer increase in distance from the median. These results, consistent with prior work on

estimating nursing home demand, likely combine a variety of factors: the importance of distance for

family visitation, behavioral mistakes on the part of patients, their children’s preferences over travel

time, and so on. For the purposes of estimating the dynamic supply model (and conducting the

counterfactuals), these caveats are unimportant, as the only requirement is that the demand-side

parameters fit the choice data well.

The bottom panel of Table 5 presents estimates of the sunk cost parameter κ, estimated both

with and without the use of the micro-moments generated from the demand system.21 Incorporating

the micro-moments to aid in estimation produces a slightly higher estimate of the sunk cost param-

eter κ, which may be driven by regional differences unique to Illinois, where the micro-moments

are defined. I find plausible estimates of the sunk cost term: a representative firm receiving a draw

from the 50th percentile of Fκ (about $38,000) would receive approximately zero economic profit,

given their variable profits ($36,000) reported in Table 4. This plausible estimate of the sunk cost

parameter reassures that the model fits the data well.

Figure 8 presents the joint distribution of the continuation values V c and the fitted stage variable

profits. Each circle corresponds to a point in the state space and is weighted by the number of

facility-years observed in each state. Unsurprisingly, the two are strongly positively correlated:

firms that have higher stage profits also have higher continuation values. To illustrate the role

of the state variables, I highlight the states corresponding to the top sextile of occupancy and

Medicaid shares. Firms with higher shares of Medicaid patients have both the lowest stage profits

as well as smaller continuation values; the converse is true for occupancy rates. This reflects that

21. In the former case, the GMM estimator corresponds to the just-identified case, and so g(θ) is equivalent to an
ordinary least squares regression of accounting variable profits on the state vector zjt.
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Figure 8: Joint Distribution of Continuation Value and Stage Profits

Notes: Figure presents supply side estimation results detailed in Section 6. Each circle represents
a point in the state space zjt, weighted by the number of facility-years observed at each state.
The results demonstrate the positive covariance between the fitted stage profits g(θ) and the corre-
sponding continuation value V c for each state. States corresponding to the top sextiles of occupancy
(corresponding to more profitable facilities) are shaded in blue, whereas states corresponding to
the top sextiles of Medicaid shares are shaded in orange.

there is significant inertia in the transition matrix, and that firms do not observe signficant swings

in their patient census across years, either in magnitude or makeup. Further statistics on the

GMM estimates of θ and the continuation values V c are reported in Appendix Tables C.3 and C.4,

respectively.

7 Counterfactual Reimbursement Policies

7.1 Simulations

Recall the aim of the model is to examine how nursing home exits would respond to alternative

reimbursement policies. With the estimates in hand, I now simulate the evolution of the Illinois

nursing home market over the period 2012-2017.22 As a benchmark, I begin by examining the

baseline scenario, or the model’s prediction of facility exits under the current reimbursement system.

Turning next to counterfactuals, I examine the impacts of alternative reimbursement policies

which adjust the Medicaid rate for various sets of firms. The low Medicaid per diem rate is often

cited as a culprit for the current wave of closures (see Section 2.1), and so this is a natural policy

lever to consider adjusting. I start by examining the impacts of a universal 10% increase in the

22. Note that these counterfactuals do not take into account oligopoly effects, and so firms take the future state
transitions as given in the data rather than updating them at present. At the end I discuss some avenues through
which these may be refined.
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daily Medicaid rate. Such a policy would raise profits for all firms in the state, and particularly so

for those with a high share of Medicaid residents. However, given the survival gains documented

in Section 4, the desirability of such a policy is not ex ante obvious. In particular, such a policy

may avert closures that would have generated survival-improving reallocations.

As such, given the significant mortality effect heterogeneity by local market conditions high-

lighted in Section 4, I consider a second set of more narrowly targeted policies which would raise

rates for only certain firms. Such programs are similar in spirit to the Rural Hospital Flexibility

program, which provides higher Medicare rates to financially vulnerable ‘Critical Access Hospitals’

in rural areas, with the aim of sustaining access to healthcare services. There is currently no such

existing program for nursing homes. In addition to targeting firms by their market concentration,

I also examine more common targeting measures, such as targeting firms operating in low-income

zip codes (those operating in the bottom quartile of median household income) as well as those in

rural counties.

To evaluate the mortality impacts of the exits induced under each policy, I compute the implied

changes in life expectancy for residents of facilities induced to exit under each scenario. To do so,

I rely on the mortality effects estimated in Section 4, coupled with predicted mortality hazards

using the demographic and health measures available in the MDS. To translate the life expectancy

effects into dollar terms, I apply the Department of Transportation’s 2017 value of statistical life of

$10.2m,23 which I convert to monthly terms using U.S. life expectancy, or approximately $11,000

per month. Appendix B provides further details on computing these life expectancy effects, as well

as additional details on the simulation procedure.

In addition to calculating the life expectancy cost, I also compute the change in consumer

surplus, which may be interpreted as the consumer valuation of access to care. This calculation

should be interpreted with significant caveats. For instance, it may be difficult to take the patients’

revealed preferences at face value, as their decisions may reflect imperfect information over quality,

the preferences of their agents (children), endogenous location decisions of facilities and patients,

and so on. Nonetheless, using the derivation in McFadden (1981), the unconditional compensating

variation can be calculated as:

∆CS =
1

αp

[∑
i

log

(∑
j∈J1

exp(αd log(Distij) + αdefsψ Defsjt)

)
LOSi

−
∑
i

log

(∑
j∈J0

exp(αd log(Distij) + αdefsψ Defsjt)

)
LOSi

]

where J1 is the set of open firms under the reference scenario, and J0 is the complete set of firms.

I compute the change in consumer surplus driven only by distance and quality, as I do not model

the firm’s price-setting decision. Individuals are weighted by their length of stay.

23. https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-
valuation-of-a-statistical-life-in-economic-analysis
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7.2 Results

The aggregate effects under each scenario are summarized in Table 6. The baseline model, presented

in column (1), appears to fit the data well, predicting 19 exits over the period 2012-2017, compared

to 18 realized exits that occurred over this period. The net effect of these exits on resident life

expectancy is positive (as indicated by the reduced form mortality results of Section 4), generating

additional longevity valued at around $10 million. However, these exits also generate a $124 million

loss in consumer surplus from changes in the patients’ choice sets.

The universal rate increase, column (2), abates 4 of these closures. These additional averted

closures restrict both the life expectancy gains and losses, generating a smaller but comparable

change in VSL as under the baseline scenario. However, by reducing closures the consumer welfare

loss falls to only $103 million. In contrast, the concentration-based targeted subsidy, column (3),

permits one more exit (16 over the sample window) than the universal rate increase, though the

composition of exiting firms varies. This targeted subsidy generates the highest life expectancy

gains, valued at about $22 million, with a comparable consumer surplus loss as under the universal

rate increase. Targeting on median household income or county rurality, columns (4) and (5),

generate much worse outcomes than targeting on concentration. The VSL improvements are much

smaller, reflecting that many of these additional dollars go to facilities that are either inframarginal

over exiting, in the case of the income-based subsidy, or operating with nearby competitors to

absorb the excess demand, in the case of the rural subsidy.

These aggregate impacts of each scenario mask significant heterogeneity in the life expectancy

effects across individuals. To this end, I also examine the distribution of life expectancy impacts

under each scenario, presented in Figure 9. As the net effect on life expectancy of exits is positive,

the bulk of the distribution always falls to the right of zero. In the baseline scenario, there is a

mass of people whose lives are extended by at least 12 months due to the reallocative benefits

of the closures (the model predicts 2,924 months of life gained). Importantly, though, there is a

significant mass with life expectancy effects below zero: these are residents whose lives are cut

short by at least one month, due to the short-run mortality costs of the closures (in aggregate,

2,003 months of life lost). As the universal rate increase reduces the number of closures, there are

fewer residents affected, but the distribution of life expectancy effects is similar to baseline. The

targeted subsidy, on the other hand, aims to preserve the life expectancy gains, while minimizing

the losses. Indeed, the targeted subsidy slightly increases the number of months gained (2,957) and

substantially limits the months lost (845). It does so by allowing the efficient closures in competitive

markets to continue, generating a distribution of life expectancy effects that is more favorable.

These exercises hint at a tradeoff between the survival benefits of efficient closures and the

consumer welfare losses from changes in the choice set. While the universal Medicaid rate increase

averts more closures than under the targeted subsidy, it also diminishes the life expectancy gains.

To explore this access-quality tradeoff, I consider the effects of a broader set of flexible rate increases
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Baseline Universal Increase Targeted Subsidy
Concentration Income Rurality

(1) (2) (3) (4) (5)

Number of Exits 19 15 16 18 15

∆ Life Expectancy

Months Gained 2,924 2,433 2,957 2,696 2,510

Months Lost -2,003 -1,539 -845 -1,965 -1,505

∆ VSL ($ mil) 9.96 9.67 22.84 7.91 10.87

∆ Consumer Surplus ($ mil) -124.04 -103.35 -106.00 -119.48 -104.41

∆ G ($ mil) 0.00 513.27 148.85 239.02 183.49

Table 6: Counterfactuals

Notes: Table summarizes the results of the counterfactual reimbursement policy simulations in the
Illinois nursing home industry from 2012-2017, relative to no exits. The changes in life expectancy
are determined using the residents of facilities predicted to exit under each scenario, assuming a
Weibull survival model. The value of statistical life (VSL) used is $10.1m, and is expressed in
months using the U.S. life expectancy from 2017. The change in consumer surplus is determined
using only changes in observed utility stemming from distance and deficiencies per bed. The
change in government spending is computed as the additional cost of the subsidy multiplied by the
number of Medicaid days. Column (1) presents the results from the baseline model. Column (2)
presents the results from the universal 10% Medicaid reimbursement rate increase. The remaining
columns presents results from the targeted subsidies. Column (3) corresponds to a subsidy targeting
concentrated nursing homes. Column (4) contains results from the subsidy targeting firms in low-
income zip codes. Column (5) contains results from the subsidy targeting all firms in rural counties.
All financial terms are denominated in 2017 dollars and expressed in thousands.

given by the following expression:

rjt = m1[j ∈ Jmt ] + c1[j ∈ Jct ]

where Jmt and Jct denote the sets of firms operating in competitive and concentrated, respectively.

rjt is the percent increase in the Medicaid rate, and so one can denote the subsidized Medicaid

rate as R̃mcaidjt = (1 + rjt)R
mcaid
jt . These (m, c) pairs generalize the earlier interventions, i.e. the

universal rate increase corresponds to (0.1, 0.1) whereas the concentration-based targeting subsidy

is (0, 0.2). I compute the aggregate life expectancy impacts, consumer surplus loss, and cost for

each (m, c) ∈ [0, 0.2]2, in 0.02 increments.

These results are summarized in Figure 10, where each cell corresponds to an (m, c) pair. The

tables illustrate the trade-off between quality and access under the different subsidy designs. Panel

(a) shows the policy which maximizes resident life-expectancy is the one which most aggressively

subsidizes firms in concentrated markets, c = 0.2, with no subsidy for firms in competitive markets,

m = 0. Such a policy would preserve all the reallocative life expectancy gains from allowing firms in

competitive markets to close, while averting the losses from exits in concentrated markets. Because
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Figure 9: Distributional Impacts of Reimbursement Policies on Life Expectancy

Notes: Figure presents the results of the alternative reimbursement policy experiments, plotting
the distribution of the effects of each policy on life expectancy, relying on the mortality effects
estimated in Section 4. The targeted subsidy preserves the gains in life expectancy expected from
the baseline exit rate.

there are many fewer firms in concentrated markets, this policy is also significantly cheaper than

a universal rate increase, as panel (c) indicates. Panel (b) illustrates that the consumer surplus

maximizing policy is, naturally, one that generates the fewest losses in the patients’ choice sets,

and so corresponds to aggressively subsidizing all firms. That is, a high universal rate increase

(0.2, 0.2) generates the smallest welfare loss by minimizing the total number of exits, while also

being the costliest policy to implement. The divergence between panels (a) and (b) reflects that

patients’ revealed preferences indicate a low valuation of quality, and a high valuation on access,

via distance. Note that these tables compute the changes (in life expectancy and consumer surplus)

induced by all exits under each of the subsidy schemes. To examine the changes induced by the

subsidies, Appendix Figure C.15 presents the same results relative to the baseline exit effects – i.e.,

normalized by the scenario corresponding to (0,0).

It is worth emphasizing that the costs of each of the policies explored here substantially out-

weigh their life expectancy and consumer surplus effects, and so these counterfactuals would fail a

standard cost-benefit analysis. The size of these interventions reflect the considerable magnitude

of public investment in long-term care, and one would require values of statistical life well above

their conventional levels to overturn the cost-benefit conclusions on their own. However, as noted,

because the model holds quality constant, it is likely that these simulations understate the benefits

from raising reimbursement rates.

There are several important caveats to these exercises. The first, as noted earlier, is that the

consumer surplus calculations require strict interpretations of the demand parameters estimated in
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0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

0% 921.2 921.2 921.2 1302.1 1302.1 1381.3 1381.3 1381.3 2041.3 2111.8 2111.8

2% 921.2 921.2 921.2 1302.1 1302.1 1381.3 1381.3 1381.3 2041.3 2111.8 2111.8

4% 694.8 694.8 694.8 1075.7 1075.7 1154.9 1154.9 1154.9 1814.9 1885.4 1885.4

6% 694.8 694.8 694.8 1075.7 1075.7 1154.9 1154.9 1154.9 1814.9 1885.4 1885.4

8% 433.4 433.4 433.4 814.3 814.3 893.4 893.4 893.4 1553.5 1624.0 1624.0

10% 433.4 433.4 433.4 814.3 814.3 893.4 893.4 893.4 1553.5 1624.0 1624.0

12% 433.4 433.4 433.4 814.3 814.3 893.4 893.4 893.4 1553.5 1624.0 1624.0

14% 433.4 433.4 433.4 814.3 814.3 893.4 893.4 893.4 1553.5 1624.0 1624.0

16% 247.5 247.5 247.5 628.5 628.5 707.6 707.6 707.6 1367.6 1438.1 1438.1

18% 247.5 247.5 247.5 628.5 628.5 707.6 707.6 707.6 1367.6 1438.1 1438.1

20% 247.5 247.5 247.5 628.5 628.5 707.6 707.6 707.6 1367.6 1438.1 1438.1
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(a) Effects of Exits on Life Expectancy (Months)

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

0% -124.0 -124.0 -124.0 -118.3 -118.3 -112.5 -112.5 -112.5 -106.0 -106.0 -106.0

2% -124.0 -124.0 -124.0 -118.3 -118.3 -112.5 -112.5 -112.5 -106.0 -106.0 -106.0

4% -119.4 -119.4 -119.4 -113.7 -113.7 -107.9 -107.9 -107.9 -101.4 -101.4 -101.4

6% -119.4 -119.4 -119.4 -113.7 -113.7 -107.9 -107.9 -107.9 -101.4 -101.4 -101.4

8% -114.9 -114.9 -114.9 -109.2 -109.2 -103.4 -103.4 -103.4 -96.9 -96.9 -96.9

10% -114.9 -114.9 -114.9 -109.2 -109.2 -103.4 -103.4 -103.4 -96.9 -96.9 -96.9

12% -114.9 -114.9 -114.9 -109.2 -109.2 -103.4 -103.4 -103.4 -96.9 -96.9 -96.9

14% -114.9 -114.9 -114.9 -109.2 -109.2 -103.4 -103.4 -103.4 -96.9 -96.9 -96.9

16% -111.3 -111.3 -111.3 -105.6 -105.6 -99.8 -99.8 -99.8 -93.4 -93.4 -93.4

18% -111.3 -111.3 -111.3 -105.6 -105.6 -99.8 -99.8 -99.8 -93.4 -93.4 -93.4

20% -111.3 -111.3 -111.3 -105.6 -105.6 -99.8 -99.8 -99.8 -93.4 -93.4 -93.4

Concentrated Subsidy
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(b) Effects of Exits on Consumer Surplus ($ millions)

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

0% 0.0 14.8 29.7 44.5 59.3 74.4 89.3 104.1 119.0 134.0 148.9

2% 87.8 102.6 117.5 132.3 147.1 162.2 177.0 191.9 206.8 221.7 236.6

4% 175.6 190.4 205.3 220.1 234.9 249.9 264.8 279.7 294.5 309.5 324.4

6% 263.4 278.2 293.1 307.9 322.7 337.7 352.6 367.4 382.3 397.2 412.1

8% 351.3 366.1 381.0 395.8 410.6 425.5 440.3 455.2 470.0 484.9 499.8

10% 439.2 454.0 468.8 483.6 498.4 513.3 528.1 543.0 557.8 572.7 587.6

12% 527.0 541.8 556.6 571.4 586.2 601.1 615.9 630.8 645.6 660.5 675.4

14% 614.8 629.7 644.5 659.3 674.1 688.9 703.7 718.6 733.4 748.3 763.2

16% 702.9 717.7 732.5 747.3 762.1 776.8 791.6 806.5 821.3 836.2 851.0

18% 790.8 805.6 820.4 835.1 849.9 864.6 879.5 894.3 909.1 924.0 938.8

20% 878.7 893.4 908.2 923.0 937.8 952.5 967.3 982.1 997.0 1011.8 1026.7
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Concentrated Subsidy

(c) Incremental Costs of Subsidies ($ millions)

Figure 10: Effects of Exits under Alternative Subsidy Targeting Schemes

Notes: Tables present the results of the optimal subsidy targeting exercise. The horizontal axes
correspond to the increase in the Medicaid reimbursement rate for firms in concentrated markets
(c) and the vertical axes correspond to the increase in the Medicaid reimbursement rate for firms
in competitive markets (m). Figures present the aggregate change in life expectancy, consumer
surplus loss, and total cost of each subsidy targeting scheme.

Section 6 as reflecting patients’ true preferences. This assumption may not hold if, for instance,

other agents (such as the patients’ children) are involved in the nursing home decision, facilities
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endogenously locate near patients with taste shocks, or patients are not fully informed about the

quality of the nursing homes. Unobserved restrictions on patients’ choice sets, such as through

selective admissions practices (Gandhi 2020), may also distort the parameter estimates away from

their true values. Moreover, there are known limitations to the substitution patterns generated by

standard logit models (Berry, Levinsohn, and Pakes 1995), which may also generate biased changes

in welfare from adding or removing items from consumers’ choice sets (Ackerberg and Rysman

2005).

Second, the model and counterfactual simulations hold fixed facility characteristics (in particular

the quality of care deficiencies Wjt), and therefore do not capture any endogenous quality responses

to payment reforms. Firms may respond to higher reimbursement rates by investing in quality-

improving technologies so as to attract more patients. In this case, the counterfactual simulations

may be significantly understating the welfare gains, both through the consumer valuation of quality

in addition to improvements in mortality outcomes at inframarginal firms.

Finally, I do not fully solve the dynamic oligopoly game played between firms under each of the

alternative reimbursement policies, and so these are myopic single-agent (rather than equilibrium)

counterfactuals. Specifically, I require that firms do not respond to changes in the transition

probabilities induced by other firms’ exits following the policy changes. This simplification is

necessary to keep the state space computationally feasible; however, doing so may fail to capture

realistic firm behavior if my approach inaccurately captures beliefs. In equilibrium, exit by one

firm will dampen exit behavior by nearby nursing homes (by increasing their profits). Without

accounting for these equilibrium effects, my results may overstate the effects of the counterfactual

reimbursements.

8 Conclusion

This paper investigates the role of patient reallocation to higher performing providers in improving

health care outcomes. While such reallocation is essential for quality improvement in the health care

sector, there may be significant transition costs involved when providers abruptly exit. I consider

both the short-run transitory costs as well as the long-run reallocative benefits in the context of

1,109 nursing home exits over a fifteen year period.

I find substantial transition costs for incumbent residents, as patients face large increases in

their mortality risk in the period surrounding the closure. Yet, the firms that patients transfer

to have significantly higher quality, and this reallocation generates significant long-run survival

benefits. Indeed, these survival benefits are significantly large that the net mortality effect is lower

than if the exit had not occurred.

I also find important heterogeneity, as the survival gains accrue only to residents in competitive

nursing home markets. In contrast, residents in areas with few other nursing homes at the time

of exit experience no mortality improvement, but instead face only the sharp initial mortality

increases. These results are consistent with widespread media reports about diminishing rural
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nursing home access, and the tremendous toll such exits impose on residents and their families

(Healy 2019; Saslow 2019).

Motivated by these reduced form results, I estimate a dynamic structural model of the nursing

home exit decision. I then use the model to examine the effects of counterfactual policies meant to

avert closures in these most vulnerable areas with the remaining providers. I find that a universal

10% increase in the Medicaid rate decreases the frequency of nursing home closures, but has the

consequence that some low-quality providers remain open in competitive areas. In contrast, a

targeted subsidy for facilities in areas with limited access to care improves overall mortality by

averting the costliest nursing home closures. Overall, these results suggest that nursing home exits

appear to generate positive reallocation, but only under certain conditions. In particular, the

benefits are realized only when there are sufficient alternatives for nursing home care.
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A Further Estimation Details

A.1 Profit Function Estimation

Estimation of the profit function g(θ) spans two datasets: (1) the national panel of accounting
profits πjt and the observed state vector zjt and (2) for the subset of facilities operating in Illinois
2012-2017, the model-implied profits π̂jt and states ẑILjt .

The moment conditions include:

E
[
πjt − g(zjt; θ)

]
= 0

E
[
π̂jt + ψ − g(zILjt ; θ)

]
= 0

E
[
π̂jt + ψ − g(ẑILjt ; θ)

]
= 0

With corresponding sample analogues:

G1 =
1

N

∑
j,t

(
πjt − g(zjt; θ)

)

G2 =
1

N IL

∑
j,t

(
π̂jt + ψ − g(zILjt ; θ)

)

G3 =
1

N IL

∑
j,t

(
π̂jt + ψ − g(ẑILjt ; θ)

)

The non-linear profit function g(z; θ) includes one parameter for each point in the state space. I
include an additional intercept ψ in the final set of micro moments to account for level differences
in the reported profits and the model-implied profits. This yields dim(z) + 1 = 145 parameters to
estimate using l = 3× dim(z) = 432 moments.

I stack G1, G2, and G3, and refer to the stacked l-dimensional row vector as:

G(θ) =

[
G1, G2, G3

]
The GMM estimator is then given by:

θ̂GMM = argmin
θ

G(θ)WG(θ)′

where W is an l× l weighting matrix. I follow the two-step feasible GMM approach, starting with
the identity matrix to generate an initial estimate θ̂1. Using these parameter estimates, I construct
the variance-covariance matrices V1, V2, and V3 for each of the three sets of moments, recalling that
the sample sizes differ. I stack these diagonally and take the inverse to form the efficient weighting
matrix W = V 1(θ̂1).
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B Further Details on Counterfactuals

B.1 Simulation Details

Evaluating the impact of an increase in the Medicaid rate requires calculating new values of π̂jt with
the scaled reimbursement rate. I adjust the national accounting profits using the product of the
Medicaid share, the size of the rate increase, and the observed profits πjt. I then take the demand
parameters as given, and estimate new θ parameters corresponding to the improved profitability.
These parameters are used to compute new continuation values EV , plugging in the prior estimate
of κ and the new θ estimates into equation (12). With the continuation values corresponding to
higher Medicaid rates in hand, I then simulate the model. I iterate through the years, calculating
the model-implied states in each year, and drawing new κjt values after each period. Facilities with
draws of κjt above their discounted continuation value permanently exit the sample. Examining
the effects of the targeted subsidy involves the same procedure as the first intervention, with the
exception that I return to the initial θ parameters, and instead directly calculate a new continuation
value for subsidized firms, noting that the continuation values are additive in the subsidy.

B.2 Computing Changes in Life Expectancy

In each of the counterfactual scenarios described in Section 7, the supply model generates a set of
facilities predicted to exit, as well as their corresponding exit years. Using the MDS, I identify the
long-stay residents in each facility in the year of predicted exit, following the approach described
in Section 3 to identify the main analytic sample.

To compute the implied changes in life expectancy for these affected residents, for each resident-
quarter I calculate fitted values of the mortality hazard given their demographic and health mea-
sures, denoted ĥno exit

it . These fitted values come from a Weibull survival model, which I train using
the control group cohort described in Section 3, as this cohort is not contaminated by any effects
of realized nursing home closures.

I also construct a counterfactual hazard rate, relying on the effects estimated from equation (1):
ĥexitit = ĥno exit

it + β̂t. With these hazards in hand, I calculate the expected change in life expectancy
as:

E[∆LEi] = E[LEexit
i ]− E[LEno exit

i ]

where

LEexit
i =

T−1∑
t

[ t∏
τ=1

(1− dexitiτ )

]
+ E[Sexit

iT ]

T∏
τ=1

(1− dexitiτ )

LEno exit
i =

T−1∑
t

[ t∏
τ=1

(1− dno exit
iτ )

]
+ E[Sno exit

iT ]

T∏
τ=1

(1− dno exit
iτ )

E[SiT ] =
Γ(1 + 1

α)(
hiT
α T 1−α

) 1
α

where diτ indicates death in period τ , and E[diτ ] = hiτ , T indicates the last period, and Γ denotes
the gamma function.
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C Additional Tables and Figures

0

200

400

600

A
dm

is
si

on
 A

ss
es

sm
en

ts

-365 -180 -90 0 60
Days relative to termination date

(a) Admissison Assessments
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(b) Discharge Assessments
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(c) Quarterly/Annual Assessments

Figure C.1: Counts of assessments relative to exit date

Notes: Figures present total daily counts of assessments across exiting facilities, by the date relative
to its termination from Medicare and Medicaid. Figure (a) presents the counts of assessments
corresponding to new admissions, which appears approximately stable until 90 days before the exit
date, at which point they begin to taper. Figure (b) presents counts of discharge assessments, which
also appear stable until 90 days before the exit date, at which point they rise sharply, with the largest
spike occurring exactly on the date of exit. Figure (c) presents the counts of regular (quarterly or
annual) assessments, which appear to follow a similar pattern as the admission assessments.
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Figure C.2: Share of surviving cohort still present in a nursing home

Notes: Figures present the empirical share of residents who are still in a nursing home. Top panel
includes residents in the baseline cohort; bottom panel includes residents who were in the facility
four quarters prior to closure.
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Figure C.3: Mortality rate relative to closure

Notes: Figures present estimates from equation (1) along with the cumulative mortality estimates
(∆Mt) for the baseline resident cohort, restricted to patients who are continuously present in any
nursing home.
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(a) Alzheimer’s/Dementia
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(b) No Alzheimer’s/Dementia

Figure C.4: Mortality change by dementia diagnosis

Notes: Figures present estimates from equation (1) along with the cumulative mortality estimates
(∆Mt) for the baseline resident cohort by the presence of a diagnosis for Alzheimer’s or other
dementia at the time of closure.
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(a) Age ≥ 80 Years Old
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(b) Age < 80 Years Old

Figure C.5: Mortality change by initial age

Notes: Figures present estimates from equation (1) along with the cumulative mortality estimates
(∆Mt) for the baseline resident cohort by the age of the resident at the time of closure. Top panel
includes residents who are 80 years old or older at the time of closure. Bottom panel includes
residents who are younger than 80 years old at the time of closure.
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Figure C.6: Test of Coefficient Stability

Notes: Figure presents several estimates of the cumulative mortality effect (∆Mt) for the baseline
resident cohort, allowing for differing levels of controls Xi.
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Figure C.7: Mortality effect with claims-derived controls

Notes: Figures present estimates from equation (1) along with the cumulative mortality estimates
(∆Mt) for the baseline resident cohort, which in addition to the usual demographic variables,
also includes a vector of 24 chronic condition indicators present in the Beneficiary Summary File.
Because these codes are only defined for Medicare Advantage patients, I restrict the sample to only
fee-for-service Medicare enrollees.
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Figure C.8: Distribution of HHI in year prior to exit among analysis sample

Notes: Figure plots the distribution of facility-level Hirschman-Herfindahl Index (HHI), drawn
using a 10 kilometer radius around each facility (Gandhi, Song, and Upadrashta 2020). HHI is
defined over facility capacity (number of beds) in the year prior to the closure. Facilities that are
at least duopolists in this market definition (HHI≥ 5, 000) are defined as concentrated, and the
remainder as competitive.
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Figure C.9: Cumulative mortality by concentration and ownership status

Notes: Figure plots the cumulative mortality effects from equation (2), omitting the quarterly
mortality estimates βτ for clarity. Each ∆Mt series represents estimates from a different subgroup,
segmented by the intersections of concentration and ownership status.
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(a) Competitive Markets
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(b) Concentrated Markets

Figure C.10: Mortality change by county-level market concentration

Notes: Figures present estimates from equation (1) along with the cumulative mortality estimates
(∆Mt) for the baseline resident cohort by the level of pre-closure competition, using a county-level
HHI measure. Given the larger market definition, I set the threshold for concentrated markets to
those with HHIs above 2,500, which produces approximately the same share of facilities defined as
concentrated as in the main definition.
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Figure C.11: Hospitalization rate

Notes: Figure presents the results from estimating equation (1) using the baseline resident cohort.
The dependent variable is an indicator for any acute care short-stay hospitalization in the quarter.
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Figure C.12: Total Deficiency Citations

Notes: Figures present how patients reallocate following their displacement from a closing nursing
home. This figure is the total deficiencies analogue to panel (a) of Figure 6 in the main text, which
is restricted to only quality of care violations. Patients who do not transfer to a new nursing home
are excluded.

57



0

5

10

15

20

−4 −3 −2 −1  0  1  2  3  4  5  6  7  8  9 10 11 12
Quarters relative to closure

C
ha

ng
e 

in
 D

is
ta

nc
e 

fr
om

 H
om

e 
(k

m
)

Competitive
Concentrated

Figure C.13: Distance from home zip code

Notes: Figure shows how far patients are displaced following their nursing home closure, presenting
βτ estimates of equation (1) with the distance from the resident’s home zip code to their current
nursing home in each quarter as the dependent variable. Distance is determined using the resident’s
last 5-digit zip code (from the Medicare enrollment records) prior to their initial nursing home stay.
Heterogeneous effects are estimated jointly, interacting the concentration measure with the relative
time indicators. Patients who do not transfer to a new nursing home are excluded.
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β = 0.782 (.059)
F = 92.1
N = 3509
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Figure C.14: Price Sensitivity First Stage

Notes: Figure presents the first stage results from estimating the price sensitivity parameter αp

described in Section 6.2. The observations correspond to facility-years, the dependent variable is
facility j’s private price, and the instruments are the average variable costs of other firms in the
county.
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0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

0% 0.0 0.0 0.0 380.9 380.9 460.1 460.1 460.1 1120.1 1190.6 1190.6

2% 0.0 0.0 0.0 380.9 380.9 460.1 460.1 460.1 1120.1 1190.6 1190.6

4% -226.4 -226.4 -226.4 154.5 154.5 233.7 233.7 233.7 893.7 964.2 964.2

6% -226.4 -226.4 -226.4 154.5 154.5 233.7 233.7 233.7 893.7 964.2 964.2

8% -487.8 -487.8 -487.8 -106.9 -106.9 -27.8 -27.8 -27.8 632.3 702.8 702.8

10% -487.8 -487.8 -487.8 -106.9 -106.9 -27.8 -27.8 -27.8 632.3 702.8 702.8

12% -487.8 -487.8 -487.8 -106.9 -106.9 -27.8 -27.8 -27.8 632.3 702.8 702.8

14% -487.8 -487.8 -487.8 -106.9 -106.9 -27.8 -27.8 -27.8 632.3 702.8 702.8

16% -673.7 -673.7 -673.7 -292.7 -292.7 -213.6 -213.6 -213.6 446.4 517.0 517.0

18% -673.7 -673.7 -673.7 -292.7 -292.7 -213.6 -213.6 -213.6 446.4 517.0 517.0

20% -673.7 -673.7 -673.7 -292.7 -292.7 -213.6 -213.6 -213.6 446.4 517.0 517.0
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(a) Effects of Subsidies on Life Expectancy (Months)

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

0% 0.0 0.0 0.0 5.7 5.7 11.5 11.5 11.5 18.0 18.0 18.0

2% 0.0 0.0 0.0 5.7 5.7 11.5 11.5 11.5 18.0 18.0 18.0

4% 4.6 4.6 4.6 10.3 10.3 16.2 16.2 16.2 22.6 22.6 22.6

6% 4.6 4.6 4.6 10.3 10.3 16.2 16.2 16.2 22.6 22.6 22.6

8% 9.2 9.2 9.2 14.9 14.9 20.7 20.7 20.7 27.1 27.1 27.1

10% 9.2 9.2 9.2 14.9 14.9 20.7 20.7 20.7 27.1 27.1 27.1

12% 9.2 9.2 9.2 14.9 14.9 20.7 20.7 20.7 27.1 27.1 27.1

14% 9.2 9.2 9.2 14.9 14.9 20.7 20.7 20.7 27.1 27.1 27.1

16% 12.7 12.7 12.7 18.4 18.4 24.2 24.2 24.2 30.7 30.7 30.7

18% 12.7 12.7 12.7 18.4 18.4 24.2 24.2 24.2 30.7 30.7 30.7

20% 12.7 12.7 12.7 18.4 18.4 24.2 24.2 24.2 30.7 30.7 30.7
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(b) Effects of Subsidies on Consumer Surplus ($ millions)

Figure C.15: Effects of Alternative Subsidy Targeting Schemes

Notes: Tables present the results of the subsidy targeting exercise. Each cell represents the effects
of the subsidy, relative to the baseline scenario. The horizontal axes correspond to the increase
in the Medicaid reimbursement rate for firms in concentrated markets (c) and the vertical axes
correspond to the increase in the Medicaid reimbursement rate for firms in competitive markets
(m). Figures present the effects of the subsidies relative to the baseline scenario (the upper leftmost
cell).
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Data Source Years Relevant Data Application

MDS 2000-2017 Demographics, health measures, nursing home stays Mortality effects, demand estimation
BSF 2000-2017 Mortality dates, home zip codes, health measures, Medicaid eligibility Mortality effects, demand estimation
MedPAR 2000-2017 Hospital admission, Medicare coverage Hospitalization effects, identifying payer type
LTCFocus 2000-2019 Nursing home characteristics Mortality effects, supply estimation
Deficiency Surveys 2006-2017 Deficiency citations Mortality effects
Medicare Cost Reports 2011-2019 Nursing home financials Supply estimation
Illinois Medicaid Cost Reports 2012-2017 Private prices and Medicaid rates Demand estimation

Table C.1: Data Sources

Notes: Table lists each data source, the years spanned, the relevant data contained therein, and its
purpose.
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Closed Firms Matched Firms All Non-Closed Firms
(1) (2) (3)

Facility Characteristics
Total Beds 84.8 91.9 110.5
Alzheimer’s Unit, % 9.0 9.5 18.9
For-Profit, % 74.5 73.3 71.9
Concentrated, % 30.8 29.5 30.6

County Population, %
Large Central Metro 24.7 25.9 21.3
Suburban 14.8 15.1 19.9
Small/Medium Metro 28.5 28.9 30.3
Rural 32.0 30.1 28.4

Patient Characteristics, %
Occupancy 70.4 75.8 84.8
Medicaid 74.1 71.7 63.0
Private-Pay 18.1 18.7 24.7

Profit Margin, % -8.9 -0.8 1.8

N 1,109 3,895 197,786

Table C.2: Facility Summary Statistics

Notes: Table presents summary statistics on the exiting facilities, their matched controls, and
the universe of non-exiting facilities collected from LTCFocus.org and the Medicare cost reports.
Observations in columns (1) and (2) are drawn from the year prior to closure. Column (3) includes
all observations for each non-closing facility. Because the distribution of exit years is not uniform,
the observations in (3) are weighted to reflect the distribution of exit years, in order to facilitate
comparison.
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Occupancy (%) Medicaid (%) Quartile 1 Quartile 2 Quartile 3 Quartile 4

(1) (2) (3) (4)

Including Micro-Moments

Low Low 27.96 28.11 30.76 31.85
Low High 28.25 16.97 24.82 28.98
High Low 36.43 50.69 44.05 62.35
High High 29.84 28.92 33.33 34.15

Excluding Micro-Moments

Low Low 17.92 25.92 36.39 46.00
Low High 13.04 15.31 19.00 25.65
High Low 32.25 45.03 52.42 71.57
High High 25.40 28.78 36.54 46.56

Table C.3: Profit function θ estimates

Notes: Table reports a subset of the profit function estimates θ at select points in the state space.
Quartiles refer to the quartile of the county fixed effect. “Low” and “high” occupancy rates and
Medicaid shares correspond to the bottom and top quantiles in the state space. The top panel
reports the value of θ computed using all the moments described in Appendix Section A.1. The
bottom panel presents results excluding the micro-moments exclusive to the Illinois facilities.
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Occupancy (%) Medicaid (%) Quartile 1 Quartile 2 Quartile 3 Quartile 4

(1) (2) (3) (4)

Including Micro-Moments

Low Low 307.85 286.25 313.65 335.41
Low High 306.59 256.81 293.37 323.12
High Low 339.15 357.60 368.07 424.32
High High 333.86 312.39 340.34 369.63

Excluding Micro-Moments

Low Low 201.91 261.11 321.09 412.58
Low High 187.15 231.89 278.20 357.01
High Low 261.14 337.60 398.16 512.54
High High 242.60 295.90 352.96 446.53

Table C.4: Continuation value V c estimates

Notes: Table reports a subset of the continuation values V c at select points in the state space.
Quartiles refer to the quartile of the county fixed effect. “Low” and “high” occupancy rates and
Medicaid shares correspond to the bottom and top quantiles in the state space. The top panel
reports the value of V c computed using all the moments described in Appendix Section A.1. The
bottom panel presents results excluding the micro-moments exclusive to the Illinois facilities.
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